The given complex number is ⇒ z = a + b i
The absolute value of z = √( a² + b² ) = 3.28
So, we will check which of the options will give 3.28
<span>( A) IF ⇒⇒ a=1.5 and b=1.7
</span>
<span>∴ √( a² + b² ) = √( 1.5² + 1.7²) = √5.14 ≈ 2.27
</span>
===================================
<span>(B) IF ⇒⇒ a=1.5 and b=3.3
</span>
<span>∴ √( a² + b² ) = √(1.5² + 3.3²) = √13.14 ≈ 3.62
</span>
====================================
<span>(C) IF ⇒⇒ a=1.7 and b=2.8
</span>
<span>∴ √( a² + b² ) = √(1.7² + 2.8²) = √10.73 ≈ 3.28
</span>
====================================
<span>(D) IF ⇒⇒ a=2.8 and b=3.3
</span>
∴ √( a² + b² ) = √(2.8² + 3.3²) = √18.73 ≈ 4.33
=====================================
So, the correct answer is option (C) <span>a=1.7,b=2.8</span>
Answer:
-4.67
Step-by-step explanation:
first find f^-1(x)
let f(x)=y
y=3x+2
3x=y-2
x=y-2/3
Therefore f^-1(x)=x-2/3
Now f^-1(-12)=-12-2/3
=-14/3
=-4.67
Answer:
C. 15²π
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Geometry</u>
- Diameter: d = 2r
- Area of a Circle: A = πr²
Step-by-step explanation:
<u>Step 1: Define</u>
d = 30 m
<u>Step 2: Find Area</u>
- Substitute [D]: 30 m = 2r
- Isolate <em>r</em>: 15 m = r
- Rewrite: r = 15 m
- Substitute [AC]: A = π(15 m)²
- Rearrange: A = 15²π
When the radius is 8, the area would be 201.06
Area of circle = pi x radius² (pi x 8²)