Answer:
You divide each fraction by the highest multiple.
4/16 can be divided by 4 to get 1/4
12/18 can be divided by 6 to get 2/3
4/10 can be divided by 2 to get 2/5
16/20 can be divided by 4 to get 4/5
Step-by-step explanation:
hope this helps
Answer:
512
Step-by-step explanation:
Suppose we ask how many subsets of {1,2,3,4,5} add up to a number ≥8. The crucial idea is that we partition the set into two parts; these two parts are called complements of each other. Obviously, the sum of the two parts must add up to 15. Exactly one of those parts is therefore ≥8. There must be at least one such part, because of the pigeonhole principle (specifically, two 7's are sufficient only to add up to 14). And if one part has sum ≥8, the other part—its complement—must have sum ≤15−8=7
.
For instance, if I divide the set into parts {1,2,4}
and {3,5}, the first part adds up to 7, and its complement adds up to 8
.
Once one makes that observation, the rest of the proof is straightforward. There are 25=32
different subsets of this set (including itself and the empty set). For each one, either its sum, or its complement's sum (but not both), must be ≥8. Since exactly half of the subsets have sum ≥8, the number of such subsets is 32/2, or 16.
Answer:
46%
Step-by-step explanation:
0.25 + 0.21 = 0.46
0.46 = 46%
-8 and 16 is the answer individually but if you add them the answer is 8
Step-by-step explanation:
