One of my poster writing
It’s easy
Thank me
And start me as a brainliest
Ethanol contains an alcohol group (-OH), which includes hydrogen bonding. Hydrogen bonding is stronger than other IMFs such as Van der Waals forces and Dipole-Dipole.
Ethene only has Van der Waals forces as it is an alkene with only C-H or C-C bonds. These means that the forces are not as strong.
Since ethanol contains hydrogen bonding, it will take a higher temperature in order to break these bonds, and thus results in a higher boiling point than ethene.
Answer:
C) 66 calories
Explanation:
The Heat energy required to flow into a unit mass object to raise its temperature by 1 degree is known as specific heat capacity.
specific heat capacity of aluminum, c = 0.22 cal/g°C
mass of aluminium, m = 20.0 g
I don’t understand the question
If you follow the octet rule, you know that an element must have 8 outside (or valence) electrons to be energetically favorable.
In CCl4, the carbon molecule forms four bonds; one for each chlorine atom. Each bond contains 2 electrons, so it is satisfied.
In PCl3, Phosphorous forms only 3 bonds with chlorine, which means in order to have 8 valence electrons, it also has a lone pair of electrons, not bonded with chlorine.
Now, in CCl4, picture the shape of the molecule like a plus sign, with the carbon in the middle and the chlorine at the four ends. It is symmetrical, and therefore is nonpolar.
In PCl3, the lone pair electrons <em>push</em>, so to speak, the 3 chlorine atoms away, making a T-shaped molecule. Since the chlorine is more electronegative than carbon, the molecule is unbalenced, making it polar.