Answer:
1/2
Step-by-step explanation:
Given:
(2 cubed) (2 superscript negative 4)
= (2³)(2^-4)
= (2³) (1 / 2⁴)
= (2³ * 1) / 2⁴
= 2³ / 2⁴
Both numerator and denominator has the same base. Thus, pick one of the bases
Also, in indices, division sign can be translated to subtraction
Therefore,
2³ / 2⁴
= 2^3-4
= 2^-1
= 1/2¹
= 1/2
(2³)(2^-4) = 1/2
Answer: D it makes the most since as both numerators are equal to each other and the denominators will have to be the same for them to be equal.
Step-by-step explanation:
Answer:
Step-by-step explanation:
- Speed = Distance/Time
- => Speed = 15 km ÷ 13/60
- => Speed = 15 km ÷ 0.216
- => Speed = 15 km/0.216
- => Speed = 15 x 4.63/0.216 x 4.63
- => Speed = 69.45 km/1 h (Approximate)
<u>Conclusion:</u>
- Therefore, the speed is 69.45 km/h (Approximate)
Hoped this helped.
Given that th<span>e coordinates of the vertices of △DEF are D(2, −1) , E(7, −1) , and F(2, −3) and the coordinates of the vertices of △D′E′F′ are D′(0, −1) , E′(−5, −1) , and F′(0, −3) .
Notice that the y-coordinates of the pre-image and that of the image are the same, which means that there is a reflection across the y-axis.
A refrection across the y-axis results in the change in sign of the x-coordinates of the pre-image and the image while the y-coordinate of the image remains the same as that of the pre-image.
A refrection across the y-axis of </span>△DEF with vertices D(2, −1) , E(7, −1) , and F(2, −3)
will result in and image with vertices (-2, -1), (-7, -1) and (-2, -3) respectively.
Notice that the x-coordinate of the final image △D′E′F′ with vertices <span>D′(0, −1) , E′(−5, −1) , and F′(0, −3) is 2 units greater than the vertices of the result of recting the pre-image across the y-axis.
This means that the result of refrecting the pre-image was shifted two places to the right.
Therefore, </span>the sequence of transformations that maps △DEF to △D′E′F′ are reflection across the y-axis and translation 2 units right.
Answer:
gftgyihujnbvgcfder5t6yujkm
Step-by-step explanation: