Well the answer to 1274 plus 3599 = 4873. but I don't know what you are asking for?
Answer:
The probability that they purchased a green or a gray sweater is 
Step-by-step explanation:
Probability is the greater or lesser possibility of a certain event occurring. In other words, probability establishes a relationship between the number of favorable events and the total number of possible events. Then, the probability of any event A is defined as the quotient between the number of favorable cases (number of cases in which event A may or may not occur) and the total number of possible cases. This is called Laplace's Law.

The addition rule is used when you want to know the probability that 2 or more events will occur. The addition rule or addition rule states that if we have an event A and an event B, the probability of event A or event B occurring is calculated as follows:
P(A∪B)= P(A) + P(B) - P(A∩B)
Where:
P (A): probability of event A occurring.
P (B): probability that event B occurs.
P (A⋃B): probability that event A or event B occurs.
P (A⋂B): probability of event A and event B occurring at the same time.
Mutually exclusive events are things that cannot happen at the same time. Then P (A⋂B) = 0. So, P(A∪B)= P(A) + P(B)
In this case, being:
- P(A)= the probability that they purchased a green sweater
- P(B)= the probability that they purchased a gray sweater
- Mutually exclusive events
You know:
- 8 purchased green sweaters
- 4 purchased gray sweaters
- number of possible cases= 12 + 8 + 4+ 7= 21
So:
Then:
P(A∪B)= P(A) + P(B)
P(A∪B)= 
P(A∪B)= 
<u><em>The probability that they purchased a green or a gray sweater is </em></u>
<u><em></em></u>
Answer:
24/7
Step-by-step explanation:
tan 2t =+ 2 tan t) /( 1 - tan²t)
(2(-4/3))/(1- 16/9)
(-8/3)/(-7/9) = 24/7
Answer:
YW=7 because it is congruent to the other bisector ZX.
Answer:

Step-by-step explanation:
Given that triangle ABC is a right angle triangle. Where angle C is a right angle. Also we have been given that BC = 11, B = 30°. Now we need to find the value of AC.
Apply formula:






or

or

Hence final answer is
.