Answer:
x₂ = 7.9156
Step-by-step explanation:
Given the function ln(x)=10-x with initial value x₀ = 9, we are to find the second approximation value x₂ using the Newton's method. According to Newtons method xₙ₊₁ = xₙ - f(xₙ)/f'(xₙ)
If f(x) = ln(x)+x-10
f'(x) = 1/x + 1
f(9) = ln9+9-10
f(9) = ln9- 1
f(9) = 2.1972 - 1
f(9) = 1.1972
f'(9) = 1/9 + 1
f'(9) = 10/9
f'(9) = 1.1111
x₁ = x₀ - f(x₀)/f'(x₀)
x₁ = 9 - 1.1972/1.1111
x₁ = 9 - 1.0775
x₁ = 7.9225
x₂ = x₁ - f(x₁)/f'(x₁)
x₂ = 7.9225 - f(7.9225)/f'(7.9225)
f(7.9225) = ln7.9225 + 7.9225 -10
f(7.9225) = 2.0697 + 7.9225 -10
f(7.9225) = 0.0078
f'(7.9225) = 1/7.9225 + 1
f'(7.9225) = 0.1262+1
f'(7.9225) = 1.1262
x₂ = 7.9225 - 0.0078/1.1262
x₂ = 7.9225 - 0.006926
x₂ = 7.9156
<em>Hence the approximate value of x₂ is 7.9156</em>
3000 s........h hours
3000/h.........1 hour
3000/60h.......1 minute
3000*m/60h....m minutes
102/87 = 3*34/(3*29) = 34/29
Answer: 62
Step by step: sorry !!
Answer
<u>15% of 30</u>
<u>
</u>
<u>3</u><u>0</u><u>%</u><u> </u><u>of</u><u> </u><u>4</u><u>5</u>
<u>
</u>
<u>6</u><u>0</u><u>%</u><u> </u><u>of</u><u> </u><u>7</u>
<u>
</u>
<u>2</u><u>3</u><u>%</u><u> </u><u>of</u><u> </u><u>2</u><u>0</u>
<u>
</u>
Hope this helps you:-)