(x + y)^2 = (x^2 - 2xy + y^2)
First distribute the ^2 on the left side of the equation to each term inside the parenthesis:
x^2+ 2xy + y^2
Now pick one of the variables to solve for and isolate it:
(solving for x)
x^2 + 2xy + y^2 = x^2 - 2xy + y^2
x^2+ 2xy = x^2 - 2xy
2xy = -2xy
-x = x
x = 0
When you solve for y in the equation it will turn out to be 0 as well
Answer:
yes
Step-by-step explanation:
The line intersects each parabola in one point, so is tangent to both.
__
For the first parabola, the point of intersection is ...
y^2 = 4(-y-1)
y^2 +4y +4 = 0
(y+2)^2 = 0
y = -2 . . . . . . . . one solution only
x = -(-2)-1 = 1
The point of intersection is (1, -2).
__
For the second parabola, the equation is the same, but with x and y interchanged:
x^2 = 4(-x-1)
(x +2)^2 = 0
x = -2, y = 1 . . . . . one point of intersection only
___
If the line is not parallel to the axis of symmetry, it is tangent if there is only one point of intersection. Here the line x+y+1=0 is tangent to both y^2=4x and x^2=4y.
_____
Another way to consider this is to look at the two parabolas as mirror images of each other across the line y=x. The given line is perpendicular to that line of reflection, so if it is tangent to one parabola, it is tangent to both.
Answer:
10
Step-by-step explanation:
Multiplying both sides by 14
2*3=h-(2*2)
6=h-4
h=6+4
h=10
5.5 × 2= 11
11 is the length.
perimeter= 11+11+5.5+5.5
The perimeter is 33 units.
Answer:
30 minutes.
Step-by-step explanation:
8:55 - 8:25 is 30 minutes.
If you add 30 to 8:25, you would get 8:55.
Therefore, it's 30 minutes.