Answer:
a = -0.3575
Step-by-step explanation:
The points A and D lie on the x-axis, this means that they are the x-intercepts of the parabola, and therefore we can find their location. 
The points A and B are located where 

This gives 


Now given the coordinates of A, we are in position to find the coordinates of the point B. Point B must have y coordinate of y=2 (because the base of the trapezoid is at y=0), and the x coordinate of B, looking at the figure, must be x coordinate of A plus horizontal distance between A and B, i.e

Thus the coordinates of B are: 

Now this point B lies on the parabola, and therefore it must satisfy the equation  
Thus 

Therefore 


 
        
             
        
        
        

 This gives us 

 We can take 4x from each term to get 

 as your answer
 
        
             
        
        
        
Substitute 

, so that

![\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dz}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dz}+\dfrac1x\left(\dfrac1x\dfrac{\mathrm d^2y}{\mathrm dz^2}\right)=\dfrac1{x^2}\left(\dfrac{\mathrm d^2y}{\mathrm dz^2}-\dfrac{\mathrm dy}{\mathrm dz}\right)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%5D%3D-%5Cdfrac1%7Bx%5E2%7D%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%2B%5Cdfrac1x%5Cleft%28%5Cdfrac1x%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D%5Cright%29%3D%5Cdfrac1%7Bx%5E2%7D%5Cleft%28%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dz%5E2%7D-%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dz%7D%5Cright%29)
Then the ODE becomes


which has the characteristic equation 

 with roots at 

. This means the characteristic solution for 

 is

and in terms of 

, this is

From the given initial conditions, we find


so the particular solution to the IVP is
 
        
             
        
        
        
5(h)+6=c? i think this would be the answer but not sure