Answer:
2 boom
Step-by-step explanation:
2
Answer:
This would mean 3x=5
so to isolate the x, we divide 5 by 3
and get x=5/3
Answer:
the values of x, y and z are x= 2, y =-1 and z=1
Step-by-step explanation:
We need to solve the following system of equations.
We will use elimination method to solve these equations and find the values of x, y and z.
2x + 2y + 5z = 7 eq(1)
6x + 8y + 5z = 9 eq(2)
2x + 3y + 5z = 6 eq(3)
Subtracting eq(1) and eq(3)
2x + 2y + 5z = 7
2x + 3y + 5z = 6
- - - -
_____________
0 -y + 0 = 1
-y = 1
=> y = -1
Subtracting eq(2) and eq(3)
6x + 8y + 5z = 9
2x + 3y + 5z = 6
- - - -
______________
4x + 5y +0z = 3
4x + 5y = 3 eq(4)
Putting value of y = -1 in equation 4
4x + 5y = 3
4x + 5(-1) = 3
4x -5 = 3
4x = 3+5
4x = 8
x= 8/4
x = 2
Putting value of x=2 and y=-1 in eq(1)
2x + 2y + 5z = 7
2(2) + 2(-1) + 5z = 7
4 -2 + 5z = 7
2 + 5z = 7
5z = 7 -2
5z = 5
z = 5/5
z = 1
So, the values of x, y and z are x= 2, y =-1 and z=1
Answer:
2x+50 and 5x-55 both are congruent or have same measure.
Step-by-step explanation:
Since we want to prove that both lines are parallel, this means no theorems that involve with parallel lines apply here.
First of, we know that AC is a straight line and has a measure as 180° via straight angle.
x+25 and 2x+50 are supplementary which means they both add up to 180°.
Sum of two measures form a straight line which has 180°.
Therefore:-
x+25+2x+50=180
Combine like terms:-
3x+75=180
Subtract 75 both sides:-
3x+75-75=180-75
3x=105
Divide both sides by 3.
x=35°
Thus, x = 35°
Then we substitute x = 35 in every angles/measures.
x+25 = 35°+25° = 60°
2x+50 = 2(35°)+50° = 70°+50° = 120°
5x-55 = 5(35°)-55 = 175°-55° = 120°
Since 2x+50 and 5x-55 have same measure or are congruent, this proves that both lines are parallel.
Answer: a) reflected over x-axis and reflected over y-axis
<u>Step-by-step explanation:</u>
Reflection over the x-axis changes the sign of the y-coordinate
Z = (x, y) → Z'(x, -y)
Reflection over the y-axis changes the sign of the x-coordinate
Z' = (x, -y) → Z''(-x, -y)
A = (-4, 1) → A'' = (4, -1)
B = (-3, 2) → A'' = (3, -2)
C = (-1, 2) → A'' = (1, -2)
D = (-2, 1) → A'' = (2, -1)