Answer:

Step-by-step explanation:
Any point on a given parabola is equidistant from focus and directrix.
Given:
Focus of the parabola is at
.
Directrix of the parabola is
.
Let
be any point on the parabola. Then, from the definition of a parabola,
Distance of
from focus = Distance of
from directrix.
Therefore,

Squaring both sides, we get
![(x-2)^{2}+(y-8)^{2}=(y-10)^{2}\\(x-2)^{2}=(y-10)^{2}-(y-8)^{2}\\(x-2)^{2}=(y-10+y-8)(y-10-(y-8))...............[\because a^{2}-b^{2}=(a+b)(a-b)]\\(x-2)^{2}=(2y-18)(y-10-y+8)\\(x-2)^{2}=2(y-9)(-2)\\(x-2)^{2}=-4(y-9)\\y-9=-\frac{1}{4}(x-2)^{2}\\y=-\frac{1}{4}(x-2)^{2}+9](https://tex.z-dn.net/?f=%28x-2%29%5E%7B2%7D%2B%28y-8%29%5E%7B2%7D%3D%28y-10%29%5E%7B2%7D%5C%5C%28x-2%29%5E%7B2%7D%3D%28y-10%29%5E%7B2%7D-%28y-8%29%5E%7B2%7D%5C%5C%28x-2%29%5E%7B2%7D%3D%28y-10%2By-8%29%28y-10-%28y-8%29%29...............%5B%5Cbecause%20a%5E%7B2%7D-b%5E%7B2%7D%3D%28a%2Bb%29%28a-b%29%5D%5C%5C%28x-2%29%5E%7B2%7D%3D%282y-18%29%28y-10-y%2B8%29%5C%5C%28x-2%29%5E%7B2%7D%3D2%28y-9%29%28-2%29%5C%5C%28x-2%29%5E%7B2%7D%3D-4%28y-9%29%5C%5Cy-9%3D-%5Cfrac%7B1%7D%7B4%7D%28x-2%29%5E%7B2%7D%5C%5Cy%3D-%5Cfrac%7B1%7D%7B4%7D%28x-2%29%5E%7B2%7D%2B9)
Hence, the equation of the parabola is
.
Answer:
1470 inches cubed
Step-by-step explanation:
Vol=length × width × height
But ALSO,
length × width = Area,
So we find another Volume equation,
Vol = BaseArea × height
This is the information you are given in the question.
Vol = 210 × 7
Vol = 1470 inches cubed
Call x the distance from home plate to second base.
There is a right triangle formed by homeplate, first base and second base. The sides of this triangle are 80 feet and 80 feet. The hypothenuse meets Pythagoras theorem:
x^2 = 80^2 + 80^2 = 2(80)^2
x = 80√2
Then the answer is the option D.
Yes, since 3 times 1.5 is 4 and 2 times 1.5 is 3.
In first trails there are 3 cups of peanuts mixed with 2 cups of raisins.
Therefore ratio of peanut to raisins is
For second trail 4.5 cup of peanuts mixed with 3 cups of raisins
Answer:
I'm pretty sure the answer is d,(When both angle KMQ and MNS are equal to angle PMN, the angles KMQ and MNS are congruent.)
Step-by-step explanation:
I had this question on my practice exam for my midterm.