3s = 5s - 10
-2s = -10
S = 5
S is the cost per pack in dollars
It would be 9 because 2x9=18. Then 18+-2=16.
Answer:
<h2>
AC = 36.01</h2>
Step-by-step explanation:
Given ΔABC and ΔADB, since both triangles are right angled triangles then the following are true.
From ΔADB, AB² = AD²+BD²
Given AB = 24 and AD = 16
BD² = AB² - AD²
BD² = 24²-16²
BD² = 576-256
BD² = 320
BD = 
BD = 17.9
from ΔABC, AC² = AB²+BC²
SInce AC = AD+DC and BC² = BD² + DC² (from ΔBDC )we will have;
(AD+DC)² = AB²+ (BD² + DC²)
Given AD = 16, AB = 24 and BD = 17.9, on substituting
(16+DC)² = 24²+17.9²+ DC²
256+32DC+DC² = 24²+17.9²+ DC²
256+32DC = 24²+17.9²
32DC = 24²+17.9² - 256
32DC = 640.41
DC = 
DC = 20.01
Remember that AC = AD+DC
AC = 16+20.01
AC = 36.01
Answer:
40 games will be played in total.
Step-by-step explanation:
Answer:
The towel bar should be placed at a distance of
from each edge of the door.
Step-by-step explanation:
Given:
Length of the towel bar = 
Now given length is in mixed fraction we will convert in fraction.
To Convert mixed fraction into fraction Multiply the whole number part by the fraction's denominator, then Add that to the numerator, then write the result on top of the denominator.
can be Rewritten as 
Length of the towel bar = 
Length of the door = 
can be Rewritten as 
Length of the door = 
We need to find the distance bar should be place at from each edge of the door.
Solution:
Let the distance of bar from each edge of the door be 'x'.
So as we placed the towel bar in the center of the door it divides into two i.e. '2x'
Now we can say that;

Now we will take LCM to make the denominators common we get;

Now denominators are common so we will solve the numerators.

Or 
Hence The towel bar should be placed at a distance of
from each edge of the door.