One of the essential concepts to solve this problem is the utilization of the equations of centripetal and gravitational force.
From them it will be possible to find the speed of the body with which the estimated time can be calculated through the kinematic equations of motion. At the same time for the calculation of this speed it is necessary to clarify that this will remain twice the ship, because as we know by relativity, when moving in the same magnitude but in the opposite direction, with respect to the ship the debris will be double speed.
By equilibrium the centrifugal force and the gravitational force are equal therefore


Where
m = mass spacecraft
v = velocity
G = Gravitational Universal Constant
M = Mass of earth
Radius of earth and orbit
Re-arrange to find the velocity





Replacing with our values we have


From the cinematic equations of motion we have to
Remember that the speed is double for the counter-direction of the trajectories.
Replacing


Therefore the time required is 3.778s
the difference is that a source is where u get it from and a form is the type of energy. the difference is that a source is where u get it from and a form is the type of energy.
Answer:
R=4.22*10⁴km
Explanation:
The tangential speed
of the geosynchronous satellite is given by:

Because
is the circumference length (the distance traveled) and T is the period (the interval of time).
Now, we know that the centripetal force of an object undergoing uniform circular motion is given by:

If we substitute the expression for
in this formula, we get:

Since the centripetal force is the gravitational force
between the satellite and the Earth, we know that:
![F_g=\frac{GMm}{R^{2}}\\\\\implies \frac{GMm}{R^{2}}=\frac{4m\pi ^{2}R}{T^{2}}\\\\R^{3}=\frac{GMT^{2}}{4\pi^{2}} \\\\R=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}} }](https://tex.z-dn.net/?f=F_g%3D%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%5C%5C%5C%5C%5Cimplies%20%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%3D%5Cfrac%7B4m%5Cpi%20%5E%7B2%7DR%7D%7BT%5E%7B2%7D%7D%5C%5C%5C%5CR%5E%7B3%7D%3D%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%7D)
Where G is the gravitational constant (
) and M is the mass of the Earth (
). Since the period of the geosynchronous satellite is 24 hours (equivalent to 86400 seconds), we finally can compute the radius of the satellite:
![R=\sqrt[3]{\frac{(6.67*10^{-11}Nm^{2}/kg^{2})(5.97*10^{24}kg)(86400s)^{2}}{4\pi^{2}}}\\\\R=4.22*10^{7}m=4.22*10^{4}km](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%2A10%5E%7B-11%7DNm%5E%7B2%7D%2Fkg%5E%7B2%7D%29%285.97%2A10%5E%7B24%7Dkg%29%2886400s%29%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%7D%5C%5C%5C%5CR%3D4.22%2A10%5E%7B7%7Dm%3D4.22%2A10%5E%7B4%7Dkm)
This means that the radius of the orbit of a geosynchronous satellite that circles the earth is 4.22*10⁴km.
Answer:
one of the reasons is that it wets the glass thermometer it also doesn't detect slight changes in temperature of the atmosphere it has a high boiling point I don't know the rest
Answer:
That's why if you lean against the wall, you don't just fall through it. The wall pushes back on you as hard as you push on it, and you and the wall stay in place. If you throw something, you put more force behind it than just leaning on it, so it pushes back with more force.
Explanation:
PLEASE MARK ME AS BRAINLIEST