1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
12

A large truck collides head-on with a small car. The car is severely damaged as a result of the collision. According to Newton's

third law, how do the forces acting between the truck and car compare during the collision
Physics
1 answer:
Blizzard [7]3 years ago
5 0

Answer: Force on the truck is equal to force on the car.

Explanation: According to the Newton's third law of motion which states that; For every action, there is an equal and opposite reaction. These pair of forces are regarded as action - reaction forces. These size or magnitude of the forces on the colliding objects are equal or the same, while the direction of the colliding objects are opposite.

In the scenario above, both truck and carry have the same mass, however, the damage suffered by the car is based on its smaller mass which makes it unable to withstand the acceleration resulting from the collision.

ma = m(-a)

m= mass, a= acceleration

You might be interested in
Which of the following are not vector directions?
Svetradugi [14.3K]

Answer:

here north are not vector option b hope ur help

6 0
3 years ago
Read 2 more answers
A fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 5.64 10-2 kg/s. the density of the gasoline is 735
Irina18 [472]
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m

Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²

Let v =  speed of pumping the gasoline, m/s
Then the mass flow rate is 
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s

The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s

Answer:  2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
7 0
3 years ago
Read 2 more answers
WILL UPVOTE EVERY ANSWER! MULTIPLE CHOICE QUESTION!
Nitella [24]
B hardness

Giddy UP!!!!!
4 0
2 years ago
I will mark you brainlist. How can you use a tuning fork to tune a piano?
Phoenix [80]

A tuning fork's job is to establish a single note that everybody can tune to.

Most tuning forks are made to vibrate at 440 Hz, a tone known to musicians as "concert A." To tune a piano, you would start by playing the piano's "A" key while ringing an "A" tuning fork. If the piano is out of tune, you'll hear a distinct warble between the note you're playing and the note played by the tuning fork; the further apart the warbles, the more out-of-tune the piano. By either tightening or loosening the piano's strings, you reduce the warble until it's in line with the tuning fork. Once the "A" key is in tune, you would then adjust all of the instrument's 87 other keys to match. The method is much the same for most other instruments. Whether you're tuning a clarinet or guitar, simply play a concert A and adjust your instrument accordingly

Explanation:

It can be a bit tricky to hold a tuning fork while manipulating an instrument, which is why some musicians decide to clench the base of a ringing tuning fork in their teeth. This has the unique effect of transmitting sound through your bones, allowing your brain to "hear" the tone through your jaw. According to some urban legends, touching your teeth with a vibrating tuning fork is enough to make them explode. It's a myth, obviously, but if you have a cavity or a chipped tooth, you'll quickly find this method to be unbelievably painful.

Luckily, you can also buy tuning forks that come mounted on top of a resonator, a hollow wooden box designed to amplify a tuning fork's vibrations. In 1860, a pair of German inventors even devised a battery-powered tuning fork that musicians didn't need to ring again and again

6 0
2 years ago
A conducting loop has an area of 0.065 m2 and is positioned such that a uniform magnetic field is perpendicular to the plane of
aev [14]

Answer:

initial magnetic field  1.306 T

Explanation:

We have given area of the conducting loop A=0.065m^2

Emf induced = 1.2 volt

Initial magnetic field B = 0.3 T

Time dt = 0.087 sec

We know that induced emf is given by e=\frac{d\Phi }{dt}=-A\frac{db}{dt}

1.2=0.065\times \frac{db}{0.087}

db=1.606T

So initial magnetic field = 1.606-0.3= 1.306 T

5 0
2 years ago
Other questions:
  • A ball is released at the top of a ramp at t =0. which is the speed of the ball at t=4
    9·2 answers
  • There is a girl pushing on a large stone sphere. The sphere has a mass of 8200 kgand a radius of 90 cm and floats with nearly ze
    15·1 answer
  • Where is the magnetic field of point P pointed
    13·1 answer
  • A 0.50 kg object is at rest. A 2.88 N force to the right acts on the object during a time interval of 1.48 s. a) What is the vel
    6·1 answer
  • CAN SOMEBODY PLEASE HELP ME! i need help and i wanna pass
    11·1 answer
  • What causes the pressure that allows diamonds to form in the mantle?
    14·1 answer
  • 20.What factor is more important in determining electrical force
    8·1 answer
  • A scientist is planning an experiment that will include the measurement of temperatures. She wishes to avoid using negative valu
    15·1 answer
  • A projectile launcher has a mass of 3 kg. It fires a projectile of mass 0.08 kg horizontally at a speed of 300 m/s. a. What is t
    9·1 answer
  • What is the magnitude of the displacement?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!