Answer:
a) 298.5 nm
, 522.4 nm and b) radiation frequency does not change
Explanation:
When electromagnetic radiation reaches a medium with a different index of refraction, the medium vibrates the molecules, as if it were a resonance process, whereby the medium vibrates at the same frequency as the incident light.
On the other hand, when the light reaches another medium its average speed within the medium changes, it is now less than the speed of light in a vacuum (c) for this to happen as we saw that the frequency is constant there must be a change in the wavelength of the radiation that is characterized by the ratio
λₙ = λ₀ / n
λₙ = 400 nm in the void
λₙ = 400 / 1.34
λₙ= 298.5 nm
λ₀ = 700 nm
λₙ = 700 / 1.34
λₙ = 522.4 nm
The radiation frequency does not change
Answer:
A
Explanation:
if it was B it would say from one to another to another
Nuclear fission formula by the looks of it. Possibly how Professor Lisa Meitner realised that she had split the atomic nucleus. The Xenon and the Strontium (Xe and Sr) would presumably show up in a radio chemical assaying test at her university.
A few years later, Professor J Robert Oppenheimer watched a nuclear test somewhere near Los Alamos, US and lamented "I am become death, the destroyer of worlds". Shortly thereafter, Hiroshima and Nagasaki were razed to the ground and annihilated by nuclear bombs. Professor Meitner, probably inadvertently, had got the keys to the doors to "nuclear hell", and JRO ended up turning them. Something like that maybe, and a very harrowing and tumultuous period in human history.
Note in the fission equation, that out come two neutrons. They go off and produce a similar fission in another U235 nucleus into a chain reaction which, i not moderated by, say, Boron, can end up as a "mushroom cloud".
To find the answer, take 55 and divide it by 1.85 to get the thickness of one card. In this case the answer would be 29.72973 cm. each.
An object is lifted from the surface of a spherical planet to an altitude equal to the radius of the planet.
As a result, the object's <em>mass remains the same</em>, and its <em>weight decreases</em> to 1/4 of whatever it is when the object is on the planet's surface.