Answer:
There is multiple. You didnt give options so heres all of them.
Step-by-step explanation:
6 : 8 9 : 12 12 : 16 15 : 20 18 : 24 21 : 28 24 : 32 27 : 36 30 : 40 33 : 44 36 : 48 39 : 52 42 : 56 45 : 60 48 : 64 51 : 68 54 : 72 57 : 76 60 : 80 63 : 84 66 : 88 69 : 92 72 : 96 75 : 1007 8 : 104 81 : 108 84 : 112 87 : 116 90 : 120 93 : 124 96 : 128 99 : 132 102 : 136 105 : 140 108 : 144 111 : 148 114 : 152 117 : 156 120 : 160 123 : 164 126 : 168 129 : 172 132 : 1761 35 : 180 138 : 184 141 : 188 144 : 192 147 : 196 150 : 200 153 : 204 156 : 208 159 : 2121 62 : 216 165 : 220 168 : 224 171 : 228 174 : 232 177 : 236 180 : 240 183 : 244 186 : 248 189 : 252 192 : 256 195 : 260 198 : 264 201 : 268 204 : 272 207 : 276 210 : 280 213 : 284 216 : 288 219 : 292 222 : 296 225 : 300 228 : 304 231 : 308 234 : 312 237 : 316 240 : 320 243 : 324246 : 328249 : 332252 : 336255 : 340258 : 344261 : 348264 : 352267 : 356270 : 360273 : 364276 : 368279 : 372282 : 376285 : 380288 : 384291 : 388
etc etc
Good Job
And always keep your eyes on ur own paper
It would be: 11 * 90/100
= 11 * 0.90 = 9.9
So, your final answer is 9.9
Hope this helps!
The first example has students building upon the previous lesson by applying the scale factor to find missing dimensions. This leads into a discussion of whether this method is the most efficient and whether they could find another approach that would be simpler, as demonstrated in Example 2. Guide students to record responses and additional work in their student materials.
§ How can we use the scale factor to write an equation relating the scale drawing lengths to the actual lengths?
!
ú Thescalefactoristheconstantofproportionality,ortheintheequation=or=!oreven=
MP.2 ! whereistheactuallength,isthescaledrawinglength,andisthevalueoftheratioofthe drawing length to the corresponding actual length.
§ How can we use the scale factor to determine the actual measurements?
ú Divideeachdrawinglength,,bythescalefactor,,tofindtheactualmeasurement,x.Thisis
! illustrated by the equation = !.
§ How can we reconsider finding an actual length without dividing?
ú We can let the scale drawing be the first image and the actual picture be the second image. We can calculate the scale factor that relates the given scale drawing length, , to the actual length,. If the actual picture is an enlargement from the scale drawing, then the scale factor is greater than one or
> 1. If the actual picture is a reduction from the scale drawing, then the scale factor is less than one or < 1.
Scaffolding:
A reduction has a scale factor less than 1, and an enlargement has a scale factor greater than 1.
Lesson 18: Computing Actual Lengths from a Scale Drawing.
Answer:
Olha,pirmieiro voce adiciona o AAS com o AABC e depois divide por 2. depois, voce ai ter que simplificar. eu iria simplificar por 2 mas vcque sabe.
Step-by-step explanation: