Answer:
Step-by-step explanation:
As you can see from the graph I attached you, the possible solutions in the interval from 0 to 2π are approximately:

So, it's useful to solve the equation too, in order to verify the result:

Taking the inverse sine of both sides:

Using this result we can conclude the solutions in the interval from 0 to 2π are approximately:

Let p be: John goes to the beach
Let q be: He will go surfing.
Then in symbolic form, the argument becomes:

p ⇒ q
p
---------------------
∴ q
An argument is valid if the conjuction of the premises implies the conclusion.
p | q | p ⇒ q | (p ⇒ q) ∧ p | [(p ⇒ q) ∧ p] ⇒ q
---------------------------------------------------------------------\
F | F | T | F | T
F | T | T | F | T
T | F | F | F | T
T | T | T | T | T
The table above shows that the argument is a tautology.
Hence, the argument is valid
Answer:
well you dont have a value of amounts of cavities so ill write write an equation 50+x100 where x represents amount of cavitys
B. the first is not a solution , but the second is
Answer:
Can you please give more info
Step-by-step explanation: