![\bf 2[x^2+y^2]^2=25(x^2-y^2)\qquad \qquad \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 3}}\quad ,&{{ 1}})\quad \end{array}\\\\ -----------------------------\\\\ 2\left[ x^4+2x^2y^2+y^4 \right]=25(x^2-y^2)\qquad thus \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[2x-2y\frac{dy}{dx} \right] \\\\\\ 2\left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=50\left[x-y\frac{dy}{dx} \right] \\\\\\ ](https://tex.z-dn.net/?f=%5Cbf%202%5Bx%5E2%2By%5E2%5D%5E2%3D25%28x%5E2-y%5E2%29%5Cqquad%20%5Cqquad%20%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%5C%5C%0A%25%20%20%20%28a%2Cb%29%0A%26%28%7B%7B%203%7D%7D%5Cquad%20%2C%26%7B%7B%201%7D%7D%29%5Cquad%20%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A2%5Cleft%5B%20x%5E4%2B2x%5E2y%5E2%2By%5E4%20%5Cright%5D%3D25%28x%5E2-y%5E2%29%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5B2x-2y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A2%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D50%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A)
![\bf \left[ 4x^3+2\left[ 2xy^2+x^22y\frac{dy}{dx} \right]+4y^3\frac{dy}{dx} \right]=25\left[x-y\frac{dy}{dx} \right] \\\\\\ 4x^3+4xy^2+4x^2y\frac{dy}{dx}+4y^3\frac{dy}{dx}+25y\frac{dy}{dx}=25x \\\\\\ \cfrac{dy}{dx}[4x^2y+4y^3+25y]=25x-4x^3+4xy^2 \\\\\\ \cfrac{dy}{dx}=\cfrac{25x-4x^3+4xy^2}{4x^2y+4y^3+25y}\impliedby m=slope](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%204x%5E3%2B2%5Cleft%5B%202xy%5E2%2Bx%5E22y%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cright%5D%3D25%5Cleft%5Bx-y%5Cfrac%7Bdy%7D%7Bdx%7D%20%20%5Cright%5D%0A%5C%5C%5C%5C%5C%5C%0A4x%5E3%2B4xy%5E2%2B4x%5E2y%5Cfrac%7Bdy%7D%7Bdx%7D%2B4y%5E3%5Cfrac%7Bdy%7D%7Bdx%7D%2B25y%5Cfrac%7Bdy%7D%7Bdx%7D%3D25x%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%5B4x%5E2y%2B4y%5E3%2B25y%5D%3D25x-4x%5E3%2B4xy%5E2%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B25x-4x%5E3%2B4xy%5E2%7D%7B4x%5E2y%2B4y%5E3%2B25y%7D%5Cimpliedby%20m%3Dslope)
notice... a derivative is just the function for the slope
now, you're given the point 3,1, namely x = 3 and y = 1
to find the "m" or slope, use that derivative, namely

that'd give you a value for the slope
to get the tangent line at that point, simply plug in the provided values
in the point-slope form

and then you solve it for "y", I gather you don't have to, but that'd be the equation of the tangent line at 3,1
They didn't carry the 2 when multiply 4 and 5. The answer would be 241,420
Answer:
No, it's not a right triangle.
Step-by-step explanation:
1. The Pythagorean Theorem states that the area of the square whose side is the hypotenuse (longest side of a right triangle) is equal to the sum of the area of the squares from the two other sides.
2. The longest side in this "triangle" has 18 centimeters, and the other 2 sides are 5 and 12 centimeters.
3. Let's apply the Pythagorean Theorem to see if 5^2 + 12^2 = 18^2
4. Okay, so the sum of the area of the squares from the two other sides is not equal to the hypotenuse squared, therefore, it's not a right triangle.
(Plus, it's not even a triangle because 7 < x < 17, and the third "side", 18, is not between 7 and 17.)
Answer:
127 7/9
Step-by-step explanation:
144 - 2/9
144/1 - 2/9
(144×9)−(2×1)/1×9
1296-2/9
1294/9
= 143 7/9
143 7/9 - 16
= 127 7/9
Answer:
0.272727… = 27/99
Step-by-step explanation:
(since 27 is the repeating part of the decimal and it contains 2 digits). We can reduce this fraction (a process that we'll talk more about in a future article) by noticing that we can divide both the numerator and denominator by 9 to get 0.272727… = 27/99 = 3/11.