1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
castortr0y [4]
2 years ago
15

Shyla answered 38 out of 40 questions correctly on the quiz. What percent did she answer correctly? She answered 95% correctly.

Show the proportion and work that gives that answer.
Mathematics
2 answers:
Phantasy [73]2 years ago
8 0

Answer:

it is 95%

Step-by-step explanation:

Strike441 [17]2 years ago
5 0

Answer: I think 90 %

Step-by-step explanation:

You might be interested in
Can somebody help me with this problem .. I’ll really appreciate it .
Ira Lisetskai [31]

Answer:

4(4x+3)=19x+9-3x+3

4*4x  4*4 =19x+9-3x+3

16x+12= 16x+12

12=12

8 0
2 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Solve for X: <br> 5(2x-12)=140
Mrac [35]

Answer:

x=20

Step-by-step explanation:

10x-60=140

10x=140+60

10x=200

x=20

6 0
3 years ago
Read 2 more answers
6x2 + 15x – 21<br> no clue
Gala2k [10]

Answer:

-303

Step-by-step explanation:

.............

7 0
3 years ago
One student ate 3/20 of all candies and another 1.2 lb. The second student ate 3/5 of the candies and the remaining 0.3 lb. What
Roman55 [17]
The students ate 6 lbs of candies.
8 0
3 years ago
Other questions:
  • Fins the product of (3s+2t)(3s-3t)
    7·2 answers
  • Andrew sold 45 tickets to the school play and Sara sold 40 tickets. What is the best ratio of the number of tickets Andrew sold
    7·2 answers
  • A circle has a radius of 10 inches. Find the approximate length of the arc intersected by a central angle of 2pi/3
    13·2 answers
  • Gavyn was thinking of a number. Gavyn doubles it and gets an answer of 30.6. What was the original number?
    15·1 answer
  • Isaac has spent $20 to set up cable service and the monthly fee is $54.95. Write an equation to represent the total amount it co
    6·2 answers
  • There are 364 first-grade students in Park Elementary School. If there are 26 more girls than boys, how many girls are there?
    11·1 answer
  • . Eleanor earns $9.00 per hour. She worked 37 hours from Monday to Friday. What were her total wages?
    12·1 answer
  • Raul uses a credit card to take out a 3-year loan of $4500 at a rate of 15% to purchase
    8·1 answer
  • In a stack of 100 newspapers, the comic section is missing from 60 papers. Lexie buys two papers from the stack. What is the pro
    6·2 answers
  • Two sides of a triangle and an angle between them are given. Construct the triangle. Does the solution exist for any given angle
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!