1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
labwork [276]
3 years ago
5

Integrate the following problem:

Mathematics
2 answers:
vazorg [7]3 years ago
7 0

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

almond37 [142]3 years ago
6 0

Answer:

\displaystyle\int e^{-x}\cos(2x)\, dx=\frac{2\sin(2x)-\cos(2x)}{5e^x}+C

Step-by-step explanation:

We would like to integrate the following integral:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx

Since this is a product of two functions, we can consider using Integration by Parts given by:

\displaystyle \int u\, dv =uv-\int v\, du

So, let’s choose our u and dv. We can choose u base on the following guidelines: LIATE; or, logarithmic, inverse trig., algebraic, trigonometric, and exponential.

Since trigonometric comes before exponential, we will let:

u=\cos(2x)\text{ and } dv=e^{-x}\, dx

By finding the differential of the left and integrating the right, we acquire:

du=-2\sin(2x)\text{ and } v=-e^{-x}

So, our integral becomes:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=(\cos(2x))(-e^{-x})-\int (-e^{-x})(-2\sin(2x))\, dx

Simplify:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\int e^{-x}\sin(2x)\, dx

Since we ended up with another integral of a product of two functions, we can apply integration by parts again. Using the above guidelines, we get that:

u=\sin(2x)\text{ and } dv=e^{-x}\, dx

By finding the differential of the left and integrating the right, we acquire:

du=2\cos(2x)\, dx\text{ and } v=-e^{-x}

This yields:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\Big[(\sin(2x))(-e^{-x})-\int (-e^{-x})(2\sin(2x))\, dx\Big]

Simplify:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\Big[-e^{-x}\sin(2x)+2\int e^{-x}\cos(2x)\, dx\Big]

We can distribute:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)-4\int e^{-x}\cos(2x)\, dx

The integral on the right is the same as our original integral. So, we can isolate it:

\displaystyle \Big(\int e^{-x}\cos(2x)\, dx\Big)+4\Big(\int e^{-x}\cos(2x)\, dx)\Big)=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)

Combine like integrals:

\displaystyle 5 \int e^{-x}\cos(2x)\, dx=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)

We can factor out an e⁻ˣ from the right:

\displaystyle 5\int e^{-x}\cos(2x)\, dx=e^{-x}\Big(-\cos(2x)+2\sin(2x)\Big)

Dividing both sides by 5 yields:

\displaystyle \int e^{-x}\cos(2x)\, dx=\frac{e^{-x}}{5}\Big(-\cos(2x)+2\sin(2x)\Big)

Rewrite. We of course also need the constant of integration. Therefore, our final answer is:

\displaystyle\int e^{-x}\cos(2x)\, dx=\frac{2\sin(2x)-\cos(2x)}{5e^x}+C

You might be interested in
Suppose that v = −2 and w = −1.<br> Which one of the following expressions is positive?
melisa1 [442]

Answer:

D

Step-by-step explanation:

Only D is positive.

 

-v       -2

----- = ----- = +2

-w      -1

4 0
3 years ago
Read 2 more answers
Need help on #5, please help :)
Gre4nikov [31]
Okay i answered by comment but now i can make an official answer here:

a) i got 5,828.6 grams / about 13lb

b) i got 273,391.48$

hope this helps!
6 0
4 years ago
Oli has a volume of 9000cm3 and a density of 0.8g/cm3
gogolik [260]
We know, mass = Density * Volume
 mass = 9000 * 0.8 g
mass = 7200 g = 7.2 Kg

So, you final answer is 7.2 Kg

Hope this helps!

3 0
3 years ago
If triangle ABC congruent triangle MNO, then what corresponding angle is congruent to angle N?
vitfil [10]
B
......................
7 0
3 years ago
Read 2 more answers
Find the value of d 2d-5=17
tino4ka555 [31]
2d=22 (add 5 to both sides)
d=11 (divide both sides by 2)

Hope this helps

7 0
3 years ago
Read 2 more answers
Other questions:
  • Derivative of x^2 •root x
    13·2 answers
  • Write a subtraction problem in which you have to rename a fraction and whosesolution is between 3 and 4
    11·1 answer
  • 850,400 845,400 840,400 what is the next two number patterns and how did you get your answer?
    11·2 answers
  • What is the answer there is time
    12·1 answer
  • How many hours must you run if you don't want to run 27kilometers at a rate if 9 kilometers per hour
    12·2 answers
  • 5 over 9 - 1 over 3 x 1 over 6
    8·1 answer
  • Add this matrix to find the answer.
    8·2 answers
  • How many SQUARES can you find? How many RECTANGLES can you find? How many TRIANGLES can you find?
    14·1 answer
  • Katie has been withdrawing the same amount of money from her savings account every month. The table below shows the amount of mo
    11·1 answer
  • To be eligible for financial aid, a student must earn no more than $30,000 per year.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!