1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
labwork [276]
3 years ago
5

Integrate the following problem:

Mathematics
2 answers:
vazorg [7]3 years ago
7 0

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

almond37 [142]3 years ago
6 0

Answer:

\displaystyle\int e^{-x}\cos(2x)\, dx=\frac{2\sin(2x)-\cos(2x)}{5e^x}+C

Step-by-step explanation:

We would like to integrate the following integral:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx

Since this is a product of two functions, we can consider using Integration by Parts given by:

\displaystyle \int u\, dv =uv-\int v\, du

So, let’s choose our u and dv. We can choose u base on the following guidelines: LIATE; or, logarithmic, inverse trig., algebraic, trigonometric, and exponential.

Since trigonometric comes before exponential, we will let:

u=\cos(2x)\text{ and } dv=e^{-x}\, dx

By finding the differential of the left and integrating the right, we acquire:

du=-2\sin(2x)\text{ and } v=-e^{-x}

So, our integral becomes:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=(\cos(2x))(-e^{-x})-\int (-e^{-x})(-2\sin(2x))\, dx

Simplify:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\int e^{-x}\sin(2x)\, dx

Since we ended up with another integral of a product of two functions, we can apply integration by parts again. Using the above guidelines, we get that:

u=\sin(2x)\text{ and } dv=e^{-x}\, dx

By finding the differential of the left and integrating the right, we acquire:

du=2\cos(2x)\, dx\text{ and } v=-e^{-x}

This yields:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\Big[(\sin(2x))(-e^{-x})-\int (-e^{-x})(2\sin(2x))\, dx\Big]

Simplify:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)-2\Big[-e^{-x}\sin(2x)+2\int e^{-x}\cos(2x)\, dx\Big]

We can distribute:

\displaystyle \int e^{-x}\cdot \cos(2x)\, dx=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)-4\int e^{-x}\cos(2x)\, dx

The integral on the right is the same as our original integral. So, we can isolate it:

\displaystyle \Big(\int e^{-x}\cos(2x)\, dx\Big)+4\Big(\int e^{-x}\cos(2x)\, dx)\Big)=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)

Combine like integrals:

\displaystyle 5 \int e^{-x}\cos(2x)\, dx=-e^{-x}\cos(2x)+2e^{-x}\sin(2x)

We can factor out an e⁻ˣ from the right:

\displaystyle 5\int e^{-x}\cos(2x)\, dx=e^{-x}\Big(-\cos(2x)+2\sin(2x)\Big)

Dividing both sides by 5 yields:

\displaystyle \int e^{-x}\cos(2x)\, dx=\frac{e^{-x}}{5}\Big(-\cos(2x)+2\sin(2x)\Big)

Rewrite. We of course also need the constant of integration. Therefore, our final answer is:

\displaystyle\int e^{-x}\cos(2x)\, dx=\frac{2\sin(2x)-\cos(2x)}{5e^x}+C

You might be interested in
Solve the systems using substitution.<br> 1.6x + 2y = -2<br> 4x + y = 1
Schach [20]
\begin{array}{ccc}(1)\\(2)\end{array}\ \left\{\begin{array}{ccc}6x+2y=-2\\4x+y=1\end{array}\right\\\\4x+y=1\ \ \ |subtract\ 4x\ from\ both\ sides\\y=1-4x\\\\subtitute\ y=1-4x\ to\ (1):\\\\6x+2(1-4x)=-2\\6x+2\cdot1+2\cdot(-4x)=-2\\6x+2-8x=-2\\-2x+2=-2\ \ \ \ |subtract\ 2\ from\ both\ sides\\-2x=-4\ \ \ |divide\ both\ sides\ by\ (-2)\\\boxed{x=2}\\\\subtitute\ the\ value\ of\ x\ to\ the\ y=1-4x:\\\\y=1-4\cdot2\\y=1-8\\\boxed{y=-7}\\\\Answer:  \left\{\begin{array}{ccc}x=2\\y=-7\end{array}\right
6 0
3 years ago
I am so bored yall ttm plz
Akimi4 [234]

<em>fr i need some tea or sum like-</em>

4 1
3 years ago
Read 2 more answers
Uhm I'm confused and someone answer and explain it to me please? Thanks
zloy xaker [14]
The answer is 4/105

Explanation
6 0
3 years ago
How do you do this math?​
Pie

You should use the app “Photomath”. It’s a really helpful math app that gives you the answer and shows the steps to how to get the answers

8 0
4 years ago
(07.06) x &lt; 16. Which of the following statements is the best way to describe the value of x? The value of x is less than 16.
kodGreya [7K]

Answer:

I hope it is correct ✌️✌️

8 0
3 years ago
Read 2 more answers
Other questions:
  • For their craft project during the first week of camp, the campers used clothespins to make miniature rocking chairs. To make 90
    5·1 answer
  • 10 adults and 5 children can watch a movie for 75 dollars. but 8 adults and 10 children can watch the movie for 78 dollars. how
    14·1 answer
  • Bob must choose a number between 61 and 107 that is a multiple of 3, 5, and 6. If there are more than one number, separate them
    12·1 answer
  • Find the slope of a line containing points 5,2 and 3,-7
    15·1 answer
  • How many terms are in the expression?<br><br> 1.4c + 11.4 - 2c - 7.3c + 6.5
    8·1 answer
  • Alice needs to rent a car while on vacation. The rental company charges $17.95, plus 15 cents for each mile driven. If Alice onl
    10·1 answer
  • What is the approximate diagonal distance from one corner of a 3 inch-by-5 inch index card to the opposite corner?
    7·2 answers
  • What is the discriminant of the quadratic equation 9x^2+5x-9=0
    9·1 answer
  • Which figures are polygons?
    9·1 answer
  • What’s the length of three pieces of pipe if they all equal 72m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!