Answer:
![P = 8 + 2\sqrt{26}](https://tex.z-dn.net/?f=P%20%3D%208%20%2B%202%5Csqrt%7B26%7D)
Step-by-step explanation:
Given
![W = (-2, 4)](https://tex.z-dn.net/?f=W%20%3D%20%28-2%2C%204%29)
![X = (2, 4)](https://tex.z-dn.net/?f=X%20%3D%20%282%2C%204%29)
![Y = (1, -1)](https://tex.z-dn.net/?f=Y%20%3D%20%281%2C%20-1%29)
![Z = (-3,-1)](https://tex.z-dn.net/?f=Z%20%3D%20%28-3%2C-1%29)
Required
The perimeter
First, calculate the distance between each point using:
![d = \sqrt{(x_1 - x_2)^2 + (y_1 -y_2)^2](https://tex.z-dn.net/?f=d%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-y_2%29%5E2)
So, we have:
![WX = \sqrt{(-2- 2)^2 + (4-4)^2 } =4](https://tex.z-dn.net/?f=WX%20%3D%20%5Csqrt%7B%28-2-%202%29%5E2%20%2B%20%284-4%29%5E2%20%7D%20%3D4)
![XY = \sqrt{(2- 1)^2 + (4--1)^2 } =\sqrt{26}](https://tex.z-dn.net/?f=XY%20%3D%20%5Csqrt%7B%282-%201%29%5E2%20%2B%20%284--1%29%5E2%20%7D%20%3D%5Csqrt%7B26%7D)
![YZ = \sqrt{(1- -3)^2 + (-1--1)^2 } =4](https://tex.z-dn.net/?f=YZ%20%3D%20%5Csqrt%7B%281-%20-3%29%5E2%20%2B%20%28-1--1%29%5E2%20%7D%20%3D4)
![ZW = \sqrt{(-3--2)^2 + (-1-4)^2 } =\sqrt{26}](https://tex.z-dn.net/?f=ZW%20%3D%20%5Csqrt%7B%28-3--2%29%5E2%20%2B%20%28-1-4%29%5E2%20%7D%20%3D%5Csqrt%7B26%7D)
So, the perimeter (P) is:
![P = 4 + \sqrt{26} + 4 + \sqrt{26}](https://tex.z-dn.net/?f=P%20%3D%204%20%2B%20%5Csqrt%7B26%7D%20%2B%204%20%2B%20%5Csqrt%7B26%7D)
![P = 8 + 2\sqrt{26}](https://tex.z-dn.net/?f=P%20%3D%208%20%2B%202%5Csqrt%7B26%7D)
Answer:
The slope intercept form is y=1/6x+1
Step-by-step explanation:
Answer:
12x+18/x+5
Step-by-step explanation:
you are correct, it is one to two
Answer:
No solution
Step-by-step explanation:
This is no solution due to the fact that the slope of both of the equation are the same. So they are parallel. If the b value is the same then it is infinitely many solutions. Due to the fact that the b value is not the same they are a set of parallel line. Parallel line do not touch or intersect ever so there for this is a no solution set.