1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bulgar [2K]
2 years ago
10

What is modern genetic techniques?

Biology
1 answer:
Arlecino [84]2 years ago
3 0
Whole genes and parts of genes can be extracted from chromosomes, linked to other DNA molecules to form recombinant DNA and introduced into living cells. In a process known as gene cloning, the host cell's biochemical processes are used to make many copies of the inserted gene and the protein it codes for.
You might be interested in
Explain why hair is a derived character for clade mammalia but having four limbs is not. for which clade is four limbs a derived
Vsevolod [243]
For the answer to the question above, I think the answer is simply because <span>four legs characteristic is not special to mammals but the hair that is something more important and special characteristic of the mammals, that's why. I hope this helps
</span>
5 0
3 years ago
Which segment of DNA contains the information necessary to produce a protein?
pentagon [3]
I think its ribosomes
8 0
3 years ago
which body system rapidly communicates information using electrical signals? A. Endocrine B. integumentary C. Nervous D. Respira
lorasvet [3.4K]
The nervous system does
7 0
3 years ago
Three linked autosomal loci were studied in smurfs.
cupoosta [38]

Answer:

height -------- color --------- mood

           (13.2cM)      (14.5cM)

C=0.421

I = 0.579

Explanation:

We have the number of descendants of each phenotype product of the tri-hybrid cross.

Phenotype Number

  • pink, tall, happy            580
  • blue, dwarf, gloomy     601
  • pink, tall, gloomy         113
  • blue, dwarf, happy      107
  • blue, tall, happy              8
  • pink, dwarf, gloomy        6
  • blue, tall, gloomy          98
  • pink, dwarf, happy      101

Total number of individuals = 1614 = N

Knowing that the genes are linked, we can calculate genetic distances between them. First, we need to know their order in the chromosome, and to do so, we need to compare the phenotypes of the parental with the ones of the double recombinants. We can recognize the parental in the descendants because their phenotypes are the most frequent, while the double recombinants are the less frequent. So:

Parental)

  • Pink, tall, happy            580 individuals
  • Blue, dwarf, gloomy      601 individuals

Simple recombinant)

  • Pink Tall Gloomy           113 individuals
  • Blue, Dwarf, Happy       107 individuals
  • Blue Tall Gloomy             98 individuals
  • Pink Dwarf Happy          101 individuals

Double Recombinant)  

  • Blue Tall Happy                 8 individuals
  • Pink  Dwarf Gloomy           6 individuals  

Comparing them we realize that parental and double recombinant individuals differ in the position of the gene codifying for <u>color</u><u>.</u> They only change in the position of Blue and Pink. This suggests that the position of the color gene is in the middle of the other two genes, height and mood, because in a double recombinant only the central gene changes position in the chromatid.  

So, the alphabetic order of the genes is:

---- height ---- color ----- mood ----

Now we will call Region I to the area between Height and Color, and Region II to the area between Color and Mood.

Once established the order of the genes we can calculate distances between them, and we will do it from the central gene to the genes on each side. First We will calculate the recombination frequencies, and we will do it by region. We will call P1 to the recombination frequency between Height and color genes, and P2 to the recombination frequency between color and mood.

P1 = (R + DR) / N

P2 = (R + DR)/ N

Where: R is the number of recombinants in each region (the ones that have an intermediate phenotypic frequency), DR is the number of double recombinants in each region, and N is the total number of individuals.  So:

Region I

Tall------ Pink--------happy  (Parental) 580 individuals

Dwarf ---Pink------- Happy (Simple Recombinant) 101 individuals

Dwarf--- Pink-------Gloomy (Double Recombinant) 6 individuals

Dwarf----Blue-------Gloomy (Parental) 601 individuals

Tall ------Blue------- Gloomy (Simple Recombinant)  98 individuals

Tall ----- Blue------- Happy   (Double Recombinant) 8 individuals  

Region II

Tall------ Pink--------happy (Parental) 580 individuals

Tall-------Pink------- Gloomy (Simple Recombinant) 113 individuals

Dwarf----Pink------- Gloomy (Double Recombinant) 6 individuals

Dwarf----Blue-------Gloomy (Parental) 601 individuals

Dwarf ----Blue-------Happy (Simple Recombinant) 107 individuals

Tall ----- Blue------- Happy   (Double Recombinant) 8 individuals

In each region, the highlighted traits are the ones that suffered recombination.

  • P1 = (R + DR) / N

P1 = (101+6+98+8)/1614

P1 = 213/1614

P1 = 0.132    

  • P2= = (R + DR) / N

P2 = (113+6+107+8)/1614

P1 = 234/1614

P1 = 0.145

Now, to calculate the recombination frequency between the two extreme genes, height and mood, we can just perform addition or a sum:

  • P1 + P2= Pt

0.132 + 0.145 = Pt

0.277=Pt

The genetic distance will result from multiplying that frequency by 100 and expressing it in map units (MU). One centiMorgan (cM) equals one map unit (MU).  

The map unit is the distance between the pair of genes for which every 100 meiotic products, one results in a recombinant product.  

Now we must multiply each recombination frequency by 100 to get the genetic distance in map units:

GD1= P1 x 100 = 0.132 x 100 = 13.2 MU = 13.2 cM

GD2= P2 x 100 = 0.145 x 100 = 14.5 MU = 14.5 cM

GD3=Pt x 100 = 0.277 x 100 = 27.7 MU = 27.7 cM

To calculate the coefficient of coincidence, CC, we must use the next formula:

CC= observed double recombinant frequency/expected double recombinant frequency

Note:  

-observed double recombinant frequency=total number of observed double recombinant individuals/total number of individuals

-expected double recombinant frequency: recombination frequency in region I x recombination frequency in region II.

  • CC= ((6 + 8)/1614)/0.132x0.145

        CC=0.008/0.019

        CC=0.421

The coefficient of interference, I, is complementary with CC.

I = 1 - CC

I = 1 - 0.421

I = 0.579

8 0
2 years ago
What is the scientific method and why is it important?
Ray Of Light [21]

Answer:

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement), the results aiming to support or contradict a theory.

Explanation:

I don't know if it can help you

5 0
2 years ago
Read 2 more answers
Other questions:
  • Which sentence would make a good thesis statement for an essay about a theme in "Stray"? The story "Stray" points out that every
    8·2 answers
  • Which of the following are the correct name and function of structure A? A. nucleolus; ribosome assembly B. mitochondrion; conve
    11·2 answers
  • Maslow placed ________ at the base of his hierarchy of needs.
    6·1 answer
  • How much cytosine is in cows
    15·2 answers
  • When the human body perceives internal and external stimuli, it responds to maintain a stable internal environment. What is an e
    10·1 answer
  • Which word is the best synonym for stress
    11·2 answers
  • Why did Tycho Brahe only give Johannes Kepler part of his data?
    13·1 answer
  • What was the environment from which aquatic vertebrates colonized the terrestrial environment?
    10·1 answer
  • Hahahahhahhhzha shshhshs
    13·1 answer
  • Number 1-8 what are they please
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!