1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
7

Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3

Mathematics
1 answer:
Genrish500 [490]3 years ago
5 0

Answer:

Para un vaso de V = 25\pi\,cm^{3}, las dimensiones del vaso son r \approx 2.321\,cm y h \approx 4.642\,cm.

Para un vaso de V = 1000\,cm^{3}, las dimensiones del vaso son r \approx 5.419\,cm y h \approx 10.839\,cm.

Step-by-step explanation:

El vaso se puede modelar como un cilindro recto. El enunciado pregunta por las dimensiones del vaso tal que su área superficial (A_{s}), en centímetros cuadrados, sea mínima para el volumen dado (V), en centímetros cúbicos. Las ecuaciones de volumen y área superficial son, respectivamente:

V = \pi\cdot r^{2}\cdot h (1)

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot r\cdot h (2)

De (1):

h = \frac{V}{\pi\cdot r^{2}}

En (2):

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot \left(\frac{V}{\pi\cdot r} \right)

A_{s} = 2\cdot \left(\pi\cdot r^{2}+V\cdot r^{-1} \right)

Asumamos que V es constante, la primera y segunda derivadas de la función son, respectivamente:

A'_{s} = 2\cdot (2\pi\cdot r -V\cdot r^{-2})

A'_{s} = 4\pi\cdot r - 2\cdot V\cdot r^{-2} (3)

A''_{s} = 4\pi + 4\cdot V \cdot r^{-3} (4)

Si igualamos A'_{s} a cero, entonces hallamos los siguientes puntos críticos:

4\pi\cdot r - 2\cdot V\cdot r^{-2} = 0

4\pi\cdot r = 2\cdot V\cdot r^{-2}

4\pi\cdot r^{3} = 2\cdot V

r^{3} = \frac{V}{2\pi}

r = \sqrt[3]{\frac{V}{2\pi} } (5)

Ahora, si aplicamos este valor a (4), tenemos que:

A_{s}'' = 4\pi + \frac{4\cdot V}{\frac{V}{2\pi} }

A''_{s} = 4\pi + 8\pi

A_{s}'' = 12\pi (6)

De acuerdo con este resultado, el valor crítico está asociado al área superficial mínima. Ahora, la altura se calcula a partir de (5) y (1):

h = \frac{V}{\pi\cdot \left(\frac{V}{2\pi} \right)^{2/3} }

h = \frac{2^{2/3}\cdot \pi^{2/3}\cdot V}{\pi\cdot V^{2/3}}

h = \frac{2^{2/3}\cdot V^{1/3}}{\pi^{1/3}}

Si V = 25\pi\,cm^{3}, entonces las dimensiones del vaso son:

r = \sqrt[3]{\frac{25\pi\,cm^{3}}{2\pi} }

r \approx 2.321\,cm

h = \frac{2^{2/3}\cdot (25\pi\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 4.642\,cm

Un litro equivale a 1000 centímetros cúbicos, las dimensiones del vaso son:

r = \sqrt[3]{\frac{1000\,cm^{3}}{2\pi} }

r \approx 5.419\,cm

h = \frac{2^{2/3}\cdot (1000\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 10.839\,cm

You might be interested in
An airport limousine can accommodate up to four passengers on any one trip. The company will accept a maximum of six reservation
miss Akunina [59]

Answer:

a) 0.109375 = 0.109 to 3 d.p

b) 1.00 to 3 d.p

Step-by-step explanation:

Probability of someone that made a reservation not showing up = 50% = 0.5

Probability of someone that made a reservation showing up = 1 - 0.5 = 0.5

a) If six reservations are made, what is the probability that at least one individual with a reservation cannot be accommodated on the trip?

For this to happen, 5 or 6 people have to show up since the limousine can accommodate a maximum of 4 people

Let P(X=x) represent x people showing up

probability that at least one individual with a reservation cannot be accommodated on the trip = P(X = 5) + P(X = 6)

P(X = x) can be evaluated using binomial distribution formula

Binomial distribution function is represented by

P(X = x) = ⁿCₓ pˣ qⁿ⁻ˣ

n = total number of sample spaces = 6

x = Number of successes required = 5 or 6

p = probability of success = 0.5

q = probability of failure = 0.5

P(X = 5) = ⁶C₅ (0.5)⁵ (0.5)⁶⁻⁵ = 6(0.5)⁶ = 0.09375

P(X = 6) = ⁶C₆ (0.5)⁶ (0.5)⁶⁻⁶ = 1(0.5)⁶ = 0.015625

P(X=5) + P(X=6) = 0.09375 + 0.015625 = 0.109375

b) If six reservations are made, what is the expected number of available places when the limousine departs?

Probability of one person not showing up after reservation of a seat = 0.5

Expected number of people that do not show up = E(X) = Σ xᵢpᵢ

where xᵢ = each independent person,

pᵢ = probability of each independent person not showing up.

E(X) = 6(1×0.5) = 3

If 3 people do not show up, it means 3 people show up and the number of unoccupied seats in a 4-seater limousine = 4 - 3 = 1

So, expected number of unoccupied seats = 1

5 0
3 years ago
How to slove this question​
77julia77 [94]
The answer is A 101 see pic for work

3 0
3 years ago
Which polynomial does this group of times represent
rodikova [14]
The group of tiles represent answer A. There are 6 x² tiles, 3 x tiles, and 1 tile.
4 0
3 years ago
Read 2 more answers
Find the volume of the solid formed by rotating the region bounded by the given curves about the indicated axis. y = x3/4, x = 0
vovangra [49]

Answer:

7.92 cubic units

Step-by-step explanation:

The volume formed is V = ∫πx²dy

Now, since y = x³/4, x = ∛(4y). Also if x = 0, y = 0³/4 = 0 and the curve intersects the line y = 1. So the limits of integration are y = 0 to y = 1

So, V = ∫₀¹πx²dy

= ∫₀¹π[ ∛(4y)]²dy

= π(∛4)²∫₀¹[ ∛(y]²dy

= π(∛4)²∫₀¹y^³/₂dy

= π(∛4)²[y^⁵/₂]₀¹

= π(∛4)²[1^⁵/₂ - 0^⁵/₂]

= π(∛4)²[1 - 0]

= π(∛4)²

= 7.92 cubic units

3 0
3 years ago
Please help I’ll give brainliest if correct
LenKa [72]

go with the first choice, i’m not 100% sure but it’s either the first or the last choice.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Jared uses 24 tiles to cover the top of his desk. Of the 24 tiles, ⅜ are blue. How many of the tiles are blue?
    6·1 answer
  • Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the corre
    8·1 answer
  • 3. Complete the square for 3x2 - 6x = 21.<br> Help
    6·1 answer
  • Polar coordinates of a point are given. Find the rectangular coordinates of the point. (2.1 ; 2pi/9)
    13·1 answer
  • A right triangle is shown below.
    5·2 answers
  • The table shows the total areas of four states.
    10·2 answers
  • Susan opened a college savings account 4 years ago. She opened the account with an initial deposit of $3,000. Starting the next
    12·2 answers
  • Pecans are on sale at 0.95 per pound. Harold buys 0.6 puonds of pecans. How many will the pecans cost.
    11·1 answer
  • One Euro (€) is equivalent to $1.10. A souvenir costing €15 would cost how much in dollars?
    12·2 answers
  • Troy prepared 10 kilograms of dough after working 2 hours. How many hours did Troy work if
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!