1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
7

Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3

Mathematics
1 answer:
Genrish500 [490]3 years ago
5 0

Answer:

Para un vaso de V = 25\pi\,cm^{3}, las dimensiones del vaso son r \approx 2.321\,cm y h \approx 4.642\,cm.

Para un vaso de V = 1000\,cm^{3}, las dimensiones del vaso son r \approx 5.419\,cm y h \approx 10.839\,cm.

Step-by-step explanation:

El vaso se puede modelar como un cilindro recto. El enunciado pregunta por las dimensiones del vaso tal que su área superficial (A_{s}), en centímetros cuadrados, sea mínima para el volumen dado (V), en centímetros cúbicos. Las ecuaciones de volumen y área superficial son, respectivamente:

V = \pi\cdot r^{2}\cdot h (1)

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot r\cdot h (2)

De (1):

h = \frac{V}{\pi\cdot r^{2}}

En (2):

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot \left(\frac{V}{\pi\cdot r} \right)

A_{s} = 2\cdot \left(\pi\cdot r^{2}+V\cdot r^{-1} \right)

Asumamos que V es constante, la primera y segunda derivadas de la función son, respectivamente:

A'_{s} = 2\cdot (2\pi\cdot r -V\cdot r^{-2})

A'_{s} = 4\pi\cdot r - 2\cdot V\cdot r^{-2} (3)

A''_{s} = 4\pi + 4\cdot V \cdot r^{-3} (4)

Si igualamos A'_{s} a cero, entonces hallamos los siguientes puntos críticos:

4\pi\cdot r - 2\cdot V\cdot r^{-2} = 0

4\pi\cdot r = 2\cdot V\cdot r^{-2}

4\pi\cdot r^{3} = 2\cdot V

r^{3} = \frac{V}{2\pi}

r = \sqrt[3]{\frac{V}{2\pi} } (5)

Ahora, si aplicamos este valor a (4), tenemos que:

A_{s}'' = 4\pi + \frac{4\cdot V}{\frac{V}{2\pi} }

A''_{s} = 4\pi + 8\pi

A_{s}'' = 12\pi (6)

De acuerdo con este resultado, el valor crítico está asociado al área superficial mínima. Ahora, la altura se calcula a partir de (5) y (1):

h = \frac{V}{\pi\cdot \left(\frac{V}{2\pi} \right)^{2/3} }

h = \frac{2^{2/3}\cdot \pi^{2/3}\cdot V}{\pi\cdot V^{2/3}}

h = \frac{2^{2/3}\cdot V^{1/3}}{\pi^{1/3}}

Si V = 25\pi\,cm^{3}, entonces las dimensiones del vaso son:

r = \sqrt[3]{\frac{25\pi\,cm^{3}}{2\pi} }

r \approx 2.321\,cm

h = \frac{2^{2/3}\cdot (25\pi\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 4.642\,cm

Un litro equivale a 1000 centímetros cúbicos, las dimensiones del vaso son:

r = \sqrt[3]{\frac{1000\,cm^{3}}{2\pi} }

r \approx 5.419\,cm

h = \frac{2^{2/3}\cdot (1000\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 10.839\,cm

You might be interested in
3g+5=20 how do you solve that equation
german
3g+5=20
-5. -5

3g=15
Divide both numbers by three
g=5
3 0
4 years ago
Original price :$91.25, Tax:5.4%, Final price?
Cloud [144]
The final price is $96.18
5 0
3 years ago
Read 2 more answers
PLEASE HELP WITH THIS ALGEBRA QUESTION!!!!
ElenaW [278]
Subtract 8x from both sides and then divide both sides by 11 making the equation y=8/11x+8. First, you go up 8 places on the y intercept and make a point. From there, go up 8 (rise) points and right 11 (run) because the slope is 8/11 and it is rise/run.
8 0
3 years ago
What is the slope of a line that contains the points (-1, 9) And 5, 21)
TEA [102]

C.) 2

21-9= 12

5--1= 6

12/6+= 2


8 0
3 years ago
Plsss need help!!! will give brainliest !!!
Vesna [10]

Answer:

The relationship between the graphs of the two functions is "They are reflections of each other across the y-axis" ⇒ B

Step-by-step explanation:

  • If the function f(x) reflected across the x-axis, then the new  function g(x) = - f(x), which means the signs of the y-coordinates of the points on f(x) are opposite in g(x)
  • If the function f(x) reflected across the y-axis, then the new  function g(x) = f(-x), which means the signs of the x-coordinates of the points on f(x) are opposite in g(x)

∵ The points on f(x) are (-2, -31), (-1, 0), (1, 2), (2, 33)

∵ The points on g(x) are (2, 3), (1, 0), (-1, 2), (-2, 33)

∵ All x-coordinates on f(x) multiplied by -1 to get the x-coordinates of g(x)

→ By using the 2nd rule above

∴ g(x) is the image of f(x) after reflection across the y-axis

∴ The relationship between the graphs of the two functions is

    "They are reflections of each other across the y-axis"

7 0
3 years ago
Other questions:
  • A diver is swimming 30 feet below sea level. Another diver is taking a break on a boat platform that is 5 meters above sea level
    13·2 answers
  • The square shown has a perimeter of 32 units. The square is rotated about line k. What shape is created by the rotation and what
    14·2 answers
  • How many ways can a person order a 2 course meal
    9·1 answer
  • What is the image of (-7,-8) after a dilation by a scale factor of 4 centered at the origin
    9·1 answer
  • Use B=P(1+r/n) to find out the balance in marks account if he deposited 1950.00 at 2% Compounded daily for 4 years
    9·1 answer
  • Timed!!
    12·1 answer
  • find the length of the second base of a trapezoid with one base measuring 29ft a height of 9ft and an area of 193.5ft
    15·1 answer
  • Write down the size of angle ABC give a reason for your answer ​
    9·1 answer
  • Helpppppp meeee please and thank you I’ll give you brainliest
    11·1 answer
  • PLEASE ANSWER HONESTLY AND WITH FULL EXPLANATION
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!