1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
2 years ago
7

Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3

Mathematics
1 answer:
Genrish500 [490]2 years ago
5 0

Answer:

Para un vaso de V = 25\pi\,cm^{3}, las dimensiones del vaso son r \approx 2.321\,cm y h \approx 4.642\,cm.

Para un vaso de V = 1000\,cm^{3}, las dimensiones del vaso son r \approx 5.419\,cm y h \approx 10.839\,cm.

Step-by-step explanation:

El vaso se puede modelar como un cilindro recto. El enunciado pregunta por las dimensiones del vaso tal que su área superficial (A_{s}), en centímetros cuadrados, sea mínima para el volumen dado (V), en centímetros cúbicos. Las ecuaciones de volumen y área superficial son, respectivamente:

V = \pi\cdot r^{2}\cdot h (1)

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot r\cdot h (2)

De (1):

h = \frac{V}{\pi\cdot r^{2}}

En (2):

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot \left(\frac{V}{\pi\cdot r} \right)

A_{s} = 2\cdot \left(\pi\cdot r^{2}+V\cdot r^{-1} \right)

Asumamos que V es constante, la primera y segunda derivadas de la función son, respectivamente:

A'_{s} = 2\cdot (2\pi\cdot r -V\cdot r^{-2})

A'_{s} = 4\pi\cdot r - 2\cdot V\cdot r^{-2} (3)

A''_{s} = 4\pi + 4\cdot V \cdot r^{-3} (4)

Si igualamos A'_{s} a cero, entonces hallamos los siguientes puntos críticos:

4\pi\cdot r - 2\cdot V\cdot r^{-2} = 0

4\pi\cdot r = 2\cdot V\cdot r^{-2}

4\pi\cdot r^{3} = 2\cdot V

r^{3} = \frac{V}{2\pi}

r = \sqrt[3]{\frac{V}{2\pi} } (5)

Ahora, si aplicamos este valor a (4), tenemos que:

A_{s}'' = 4\pi + \frac{4\cdot V}{\frac{V}{2\pi} }

A''_{s} = 4\pi + 8\pi

A_{s}'' = 12\pi (6)

De acuerdo con este resultado, el valor crítico está asociado al área superficial mínima. Ahora, la altura se calcula a partir de (5) y (1):

h = \frac{V}{\pi\cdot \left(\frac{V}{2\pi} \right)^{2/3} }

h = \frac{2^{2/3}\cdot \pi^{2/3}\cdot V}{\pi\cdot V^{2/3}}

h = \frac{2^{2/3}\cdot V^{1/3}}{\pi^{1/3}}

Si V = 25\pi\,cm^{3}, entonces las dimensiones del vaso son:

r = \sqrt[3]{\frac{25\pi\,cm^{3}}{2\pi} }

r \approx 2.321\,cm

h = \frac{2^{2/3}\cdot (25\pi\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 4.642\,cm

Un litro equivale a 1000 centímetros cúbicos, las dimensiones del vaso son:

r = \sqrt[3]{\frac{1000\,cm^{3}}{2\pi} }

r \approx 5.419\,cm

h = \frac{2^{2/3}\cdot (1000\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 10.839\,cm

You might be interested in
Kelsey makes pendants that she would like to sell at an upcoming craft fair. She must pay $200 to rent a booth at the craft fair
lubasha [3.4K]

Answer:

Additional <em>26</em> pendants are to be sold to make profit.

Step-by-step explanation:

Rent of booth at the craft fair = $200

Cost of material for each pendant = $7.80

Let Kelsey makes x number of pendants.

To calculate the total spending, we have to add the rent of booth at the craft fair and cost of material for x number of pendants.

Cost of material for x number of pendants = Cost of material for each pendant multiplied by number of pendants

Cost of material for x number of pendants = $7.80 \times x

So, total cost = $200 +  $7.80 \times x

Now, each pendant is sold at $13.50

So, total money made by selling  x pendants =  $13.50 \times x

For making profit, total money made must be greater than the total cost.

Therefore, the inequality becomes:

\bold{13.50 \times x  > 200+7.80\times x }

Let us solve the inequality now:

13.50x - 7.80x>200\\\Rightarrow 5.7x > 200\\\Rightarrow \bold{x > 35.08}

So, at least 36 pendants are to be sold to make a profit.

Additional 36-10  = <em>26</em> pendants are to be sold to make profit.

5 0
3 years ago
Explain how to determine the zeros of f(x)=(x+3)(x-1)(x-8)
spin [16.1K]

Answer:

x=-3,  x=1,  x=8

Step-by-step explanation:

When you have to find the zero of an equation like (x+3) all you have to do is solve for x.

x+3=0           equal the equation to zero

x+3-3=0-3    cancel out 3

x=-3              answer


If you have to find the zero of an equation like f(x)=-2x^2 - 5x + 7 then you would have to factor the equation.

7*-2=-14   multiply

-7 & 2   find the two numbers that when multiplied =14 and when added = -5

(2x^2 + 2)  (-7x + 7)  replace -5 with -7 & 2

-2x (x - 1)   -7 (x - 1)   factor

(x - 1)   (-2x - 7)    rewrite

1st: x - 1 = 0

          x = 1 : Answer

2nd: -2x - 7= 0

        -2x - 7 + 7 = 0 + 7

        -2x = 7

        -2x / -2 = 7 / -2

          x = 7 / -2 : Answer





7 0
3 years ago
Read 2 more answers
3. Un objeto pequeño se pesa con un mismo instrumento por nueve estudiantes de una clase, obteniéndose los siguientes valores en
andreyandreev [35.5K]

Answer:

Step-by-step explanation:

6.0 , 6.0 , 6.1 , 6.2 , 6.3 ,  6.15 , 6.23

hope that help mark me as a brill

3 0
2 years ago
Sub 2 my channel: Siah Fiah
Nataly_w [17]

Answer:

no

Step-by-step explanation:

From left to right, follow the dots in line 1 with your finger. Count a steady beat out loud, and time your motion so your finger crosses a dot at the end of each beat. Don’t pause at the dots, and move as smoothly as you can. A good way to count is to say or think “1 Mississippi, 2 Mississippi,” and so on. Is your finger moving at a constant rate, or is the rate changing?

7 0
2 years ago
Read 2 more answers
Jasmine bought six CDs all the same price. The tags on her purchase was $5.04, and the total was $85.74. What was the price of e
Step2247 [10]
6 cds total was 85.75 and there was a 5.04 tax so take 85.75 - 5.04 = 80.70
80.70÷6= 13.45

5 0
3 years ago
Other questions:
  • If a#b = a+2b, for integers a and b, what is the value of 3#4?
    15·1 answer
  • Solve the division problem. Round answer to the nearest hundredth 9.252.063
    15·1 answer
  • Ava wants to figure out the average speed she is driving. She starts checking her car’s clock at mile marker 0. It takes her 4 m
    12·1 answer
  • The cylindrical cannister of this fire extinguisher has a radius of 2.5 inches and is 13.5 inches high.
    5·1 answer
  • What is the area of this?
    15·1 answer
  • A triangle has angles that measure 55°, 43°, and 82°. What kind of triangle is it?
    10·1 answer
  • What is the measure of each resulting angle?
    10·1 answer
  • What number has 8 hundreds, 2 fewer tens than hundreds and 2 fewer ones than hundreds
    11·1 answer
  • If R=5Z then 15Z=3Y, then R=? Show work please
    13·1 answer
  • Help pls.............
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!