1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
7

Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3

Mathematics
1 answer:
Genrish500 [490]3 years ago
5 0

Answer:

Para un vaso de V = 25\pi\,cm^{3}, las dimensiones del vaso son r \approx 2.321\,cm y h \approx 4.642\,cm.

Para un vaso de V = 1000\,cm^{3}, las dimensiones del vaso son r \approx 5.419\,cm y h \approx 10.839\,cm.

Step-by-step explanation:

El vaso se puede modelar como un cilindro recto. El enunciado pregunta por las dimensiones del vaso tal que su área superficial (A_{s}), en centímetros cuadrados, sea mínima para el volumen dado (V), en centímetros cúbicos. Las ecuaciones de volumen y área superficial son, respectivamente:

V = \pi\cdot r^{2}\cdot h (1)

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot r\cdot h (2)

De (1):

h = \frac{V}{\pi\cdot r^{2}}

En (2):

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot \left(\frac{V}{\pi\cdot r} \right)

A_{s} = 2\cdot \left(\pi\cdot r^{2}+V\cdot r^{-1} \right)

Asumamos que V es constante, la primera y segunda derivadas de la función son, respectivamente:

A'_{s} = 2\cdot (2\pi\cdot r -V\cdot r^{-2})

A'_{s} = 4\pi\cdot r - 2\cdot V\cdot r^{-2} (3)

A''_{s} = 4\pi + 4\cdot V \cdot r^{-3} (4)

Si igualamos A'_{s} a cero, entonces hallamos los siguientes puntos críticos:

4\pi\cdot r - 2\cdot V\cdot r^{-2} = 0

4\pi\cdot r = 2\cdot V\cdot r^{-2}

4\pi\cdot r^{3} = 2\cdot V

r^{3} = \frac{V}{2\pi}

r = \sqrt[3]{\frac{V}{2\pi} } (5)

Ahora, si aplicamos este valor a (4), tenemos que:

A_{s}'' = 4\pi + \frac{4\cdot V}{\frac{V}{2\pi} }

A''_{s} = 4\pi + 8\pi

A_{s}'' = 12\pi (6)

De acuerdo con este resultado, el valor crítico está asociado al área superficial mínima. Ahora, la altura se calcula a partir de (5) y (1):

h = \frac{V}{\pi\cdot \left(\frac{V}{2\pi} \right)^{2/3} }

h = \frac{2^{2/3}\cdot \pi^{2/3}\cdot V}{\pi\cdot V^{2/3}}

h = \frac{2^{2/3}\cdot V^{1/3}}{\pi^{1/3}}

Si V = 25\pi\,cm^{3}, entonces las dimensiones del vaso son:

r = \sqrt[3]{\frac{25\pi\,cm^{3}}{2\pi} }

r \approx 2.321\,cm

h = \frac{2^{2/3}\cdot (25\pi\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 4.642\,cm

Un litro equivale a 1000 centímetros cúbicos, las dimensiones del vaso son:

r = \sqrt[3]{\frac{1000\,cm^{3}}{2\pi} }

r \approx 5.419\,cm

h = \frac{2^{2/3}\cdot (1000\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 10.839\,cm

You might be interested in
Find the x-coordinates where f ' (x)=0 for f(x)=2x+sin(4x) in the interval [0, pi]
MAVERICK [17]

Answer:

The x-coordinate is \dfrac{\pi}{6}[/tex].

Step-by-step explanation:

We are given a function f(x) as:

f(x)=2x+\sin (4x)

Now on differentiating both side with respect to x we get that:

f'(x)=2+4 \cos (4x)

When f'(x)=0

this means that 2+4\cos (4x)=0\\\\4\cos (4x)=-2\\\\\cos(4x)=\dfrac{-1}{2}

Hence, cosine function takes the negative value in second and third quadrant but we have to only find the value in the interval [0,\pi].

also we know that \cos (\dfrac{2\pi}{3})=\dfrac{-1}{2}----(1) (which lie in the second quadrant)

so on comparing our equation with equation (1) we obtain:

4x=\dfrac{2\pi}{3}\\\\x=\dfrac{\pi}{6}

Hence, the x-coordinates where f'(x)=0 for f(x)=2x+\sin(4x) is \dfrac{\pi}{6}.

5 0
3 years ago
Mandy is selling pancakes and waffles at her diner. On Monday she sold a total of 300 pancakes and waffles. If she charges $3 pe
elena-s [515]

Answer:

Mandy sold 250 pancakes and 50 waffles.

Step-by-step explanation:

From the information given, you can say that the sum of pancakes and waffles is equal to 300:

x+y=300

Also, the statement indicates that she charges $3 per pancake, $1 per waffle, and made a total of $800 and you can express this as:

3x+y=800

You have the following equations:

x+y=300 (1)

3x+y=800 (2), where:

x is the number of pancakes she sold

y is the number of waffles she sold

Now, you can solve for x in (1):

x=300-y (3)

Then, you can replace (3) in (2):

3(300-y)+y=800

900-3y+y=800

900-800=2y

100=2y

y=100/2

y=50

Finally, you can replace the value of y in (3) to find x:

x=300-50

x=250

According to this, the answer is that Mandy sold 250 pancakes and 50 waffles.

5 0
3 years ago
Find the median of the data in the box plot below.
Bumek [7]

Answer:

Median = 6.5 or 6 1/2

HOPE THIS HELPED! HAVE A GREAT DAY! :)

5 0
4 years ago
What is the difference of the fractions? Use the number line and equivalent fractions to help find the answer.
Dmitry_Shevchenko [17]

9514 1404 393

Answer:

  (c)  -3/4

Step-by-step explanation:

Subtracting a positive number moves you to the left on the number line. Subtracting a negative number moves you in the opposite direction, to the right.

Here, we start at -2 1/2 = -5/2, and we move 1 3/4 = 7/4 to the right from there. Each mark on this number line is 1/4 unit, so we move 7 marks. The results is ...

  -2 1/2 -(-1 3/4) = -5/2 +7/4

  = -10/4 +7/4 = -3/4

5 0
3 years ago
The point (2,-5) is reflected over the y-axis. Which of the following points is the image?
docker41 [41]
2,5 would be the answer
7 0
3 years ago
Other questions:
  • Chase is 57 years younger the. Kori. 8 years ago Kori age was 4 times Chase age. how old is chase
    11·2 answers
  • What is i to the 97th power minus i
    11·1 answer
  • If tan 0 = 6.25, then cot 0 =
    8·1 answer
  • Can someone explain it to me?
    9·1 answer
  • Ira has 128 stamps in his stamp album he has the same number of stamps on each of the 8 pages.how many stamps are on each page
    13·2 answers
  • PLEASE HELP! Quick Math Question!!
    6·1 answer
  • Determine and state the coordinates of the center and the length of the radius of a circle whose equation is
    11·1 answer
  • What is f(-5) if f(x) = |2x-1| + 10?
    10·1 answer
  • The following chart shows the times of runners in the 100 meter sprint.
    11·1 answer
  • Write the product in standard form (2x + 5) ^2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!