1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetlana [45]
3 years ago
7

Se desea construir un vaso de papel en forma de cono circular recto que tenga un volumen de 25πcm3

Mathematics
1 answer:
Genrish500 [490]3 years ago
5 0

Answer:

Para un vaso de V = 25\pi\,cm^{3}, las dimensiones del vaso son r \approx 2.321\,cm y h \approx 4.642\,cm.

Para un vaso de V = 1000\,cm^{3}, las dimensiones del vaso son r \approx 5.419\,cm y h \approx 10.839\,cm.

Step-by-step explanation:

El vaso se puede modelar como un cilindro recto. El enunciado pregunta por las dimensiones del vaso tal que su área superficial (A_{s}), en centímetros cuadrados, sea mínima para el volumen dado (V), en centímetros cúbicos. Las ecuaciones de volumen y área superficial son, respectivamente:

V = \pi\cdot r^{2}\cdot h (1)

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot r\cdot h (2)

De (1):

h = \frac{V}{\pi\cdot r^{2}}

En (2):

A_{s} = 2\pi\cdot r^{2} + 2\pi\cdot \left(\frac{V}{\pi\cdot r} \right)

A_{s} = 2\cdot \left(\pi\cdot r^{2}+V\cdot r^{-1} \right)

Asumamos que V es constante, la primera y segunda derivadas de la función son, respectivamente:

A'_{s} = 2\cdot (2\pi\cdot r -V\cdot r^{-2})

A'_{s} = 4\pi\cdot r - 2\cdot V\cdot r^{-2} (3)

A''_{s} = 4\pi + 4\cdot V \cdot r^{-3} (4)

Si igualamos A'_{s} a cero, entonces hallamos los siguientes puntos críticos:

4\pi\cdot r - 2\cdot V\cdot r^{-2} = 0

4\pi\cdot r = 2\cdot V\cdot r^{-2}

4\pi\cdot r^{3} = 2\cdot V

r^{3} = \frac{V}{2\pi}

r = \sqrt[3]{\frac{V}{2\pi} } (5)

Ahora, si aplicamos este valor a (4), tenemos que:

A_{s}'' = 4\pi + \frac{4\cdot V}{\frac{V}{2\pi} }

A''_{s} = 4\pi + 8\pi

A_{s}'' = 12\pi (6)

De acuerdo con este resultado, el valor crítico está asociado al área superficial mínima. Ahora, la altura se calcula a partir de (5) y (1):

h = \frac{V}{\pi\cdot \left(\frac{V}{2\pi} \right)^{2/3} }

h = \frac{2^{2/3}\cdot \pi^{2/3}\cdot V}{\pi\cdot V^{2/3}}

h = \frac{2^{2/3}\cdot V^{1/3}}{\pi^{1/3}}

Si V = 25\pi\,cm^{3}, entonces las dimensiones del vaso son:

r = \sqrt[3]{\frac{25\pi\,cm^{3}}{2\pi} }

r \approx 2.321\,cm

h = \frac{2^{2/3}\cdot (25\pi\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 4.642\,cm

Un litro equivale a 1000 centímetros cúbicos, las dimensiones del vaso son:

r = \sqrt[3]{\frac{1000\,cm^{3}}{2\pi} }

r \approx 5.419\,cm

h = \frac{2^{2/3}\cdot (1000\,cm^{3})^{1/3}}{\pi^{1/3}}

h \approx 10.839\,cm

You might be interested in
Given the function f, match the function g with a transformation of f.
docker41 [41]
Given the function f, match the function g with a transformation of f.

f(x) = x2 + 1, g(x) = (x - 2)2 + 1

☆☆☆☆☆☆☆☆a) f(x + 2)

b) f(x) + 2

c) f(x) - 2

d) f(x - 2)

The transformation that occured was a horizontal shift to the right of all the x's.
3 0
3 years ago
URGENT PLEASE HELP!!! WILL GIVE 20 POINTS
vladimir1956 [14]

Answer: that the people he is addressing appreciate intellectualism

Step-by-step explanation: found it on quizlet

8 0
3 years ago
What is the distance of the line?<br> Remember the distance formula is (23 - 23) + (42 -
vivado [14]

Answer:

<em>The distance of the line is 10.82</em>

Step-by-step explanation:

Distance Between two Points in the Plane

Given two points A(x1,y1) and B(x2,y2), the distance between them is:

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

The graph clearly shows the points (-5,4) (4,-2), thus the distance is:

d=\sqrt{(4-(-5))^2+(-2-4)^2}=\sqrt{9^2+(-6)^2}

d=\sqrt{81+36}=\sqrt{117}=10.82

The distance of the line is 10.82

4 0
3 years ago
Solve for k.<br>7k - 2 ≥ -9​
Akimi4 [234]

Answer: k ≥ -1

Step-by-step explanation:

7k - 2 ≥ -9

add two to both sides

7k ≥ -7

k ≥ -1

6 0
3 years ago
Read 2 more answers
The area of a square patio is 256 sq feet. what is the length each side?
WINSTONCH [101]

Answer:

16

Step-by-step explanation:

Find the perfect square of 256 since you need to sides of the same length

16 * 26 = 256

5 0
3 years ago
Read 2 more answers
Other questions:
  • Three classes at a school have 18, 24, and 27 students. All three will be divided into project groups. Each group must have the
    15·1 answer
  • Write the quadratic equation whose roots are −3 and 6, and whose leading coefficient is 2
    15·1 answer
  • Which of the following scales of measurement lacks numeric properties?
    11·1 answer
  • Find two numbers the quotiens is between 136÷6
    10·1 answer
  • Sis Avila (STUDEN...
    11·1 answer
  • Alvin has a prism-like water tank whose base area is 0.90.90, point, 9 square meters and height is 0.60.60, point, 6 meters. He
    7·1 answer
  • Solve for V in V=s 3square if S=4
    12·1 answer
  • What is the correct order of the numbers from least to greatest. 1/2, 0.6, 6%, 6/5​
    13·2 answers
  • Find the student’s error in solving the following inequality.
    8·1 answer
  • 4) 2 2/3 yards feet * O 8 feet O 6 feet O 2 feet O 7 feet​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!