Hmm, interesting
one way would be to multply it out or set it equal to 11x where x is a whole number (if x is not a whole number, then it is not divisible)
11x=7^6+7^5-7^4
undistribute 7^4
11x=(7^4)(7^2+7^1-1)
11x=(7^4)(49+7-1)
11x=(7^4)(55)
56=5*11
11x=(7^4)(5)(11)
divide by 11
x=5(7^4)
aka, find if 11 is a factor of that number
x=5(7^4)
The simplified form is: =4p2−18p+8
Step by Step:
(4p−2)(p−4)
=(4p+−2)(p+−4)
=(4p)(p)+(4p)(−4)+(−2)(p)+(−2)(−4)
=4p2−16p−2p+8
=4p2−18p+8
Answer:
a
Step-by-step explanation:
Answer:
Step-by-step explanation:
1.
cot x sec⁴ x = cot x+2 tan x +tan³x
L.H.S = cot x sec⁴x
=cot x (sec²x)²
=cot x (1+tan²x)² [ ∵ sec²x=1+tan²x]
= cot x(1+ 2 tan²x +tan⁴x)
=cot x+ 2 cot x tan²x+cot x tan⁴x
=cot x +2 tan x + tan³x [ ∵cot x tan x
=1]
=R.H.S
2.
(sin x)(tan x cos x - cot x cos x)=1-2 cos²x
L.H.S =(sin x)(tan x cos x - cot x cos x)
= sin x tan x cos x - sin x cot x cos x

= sin²x -cos²x
=1-cos²x-cos²x
=1-2 cos²x
=R.H.S
3.
1+ sec²x sin²x =sec²x
L.H.S =1+ sec²x sin²x
=
[
]
=1+tan²x ![[\frac{\textrm{sin x}}{\textrm{cos x}} = \textrm{tan x}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%5Ctextrm%7Bsin%20x%7D%7D%7B%5Ctextrm%7Bcos%20x%7D%7D%20%3D%20%5Ctextrm%7Btan%20x%7D%5D)
=sec²x
=R.H.S
4.

L.H.S=



= 2 csc x
= R.H.S
5.
-tan²x + sec²x=1
L.H.S=-tan²x + sec²x
= sec²x-tan²x
=


=1
Answer: 28.5 square units.
Step-by-step explanation: Separate the figure into a rectangle and a triangle. Count the length and width of the rectangle. The length of the rectangle is 8 units and the width is 3 units. To find the area use the formula l*w. 8*3=24.
Next find the area of the triangle section. The triangle is 3 units tall and 3 units wide. To find the area use the formula 1/2(l*w). 3*3=9. 9/2=4.5.
Finally add the areas of the rectangular section and the triangular section. 24+4.5=28.5.