1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
3 years ago
13

If cyclist travels the average rate of 24 miles per day how many days will it take the cyclist totravel 600 miles?

Mathematics
1 answer:
yarga [219]3 years ago
5 0
600*24= 25 

It would take the cyclist 25 days to travel 600 miles. 
You might be interested in
There are twenty trays of paint. Each tray has five colors. One of the colors is purple. What fraction of the colors is purple i
suter [353]
In one tray, we have 1/5. Since one is purple out of the 5 colors. 

So in 20 trays, we have:

(1/5) x 20 = 20/5 = 4
6 0
3 years ago
Read 2 more answers
The perimeter of a playing field for a certain sport is 334ft. The field is a rectangle, and the length is 47 ft longer than the
babunello [35]

Answer:

The dimensions of the rectangle = 60ft by 107ft

Where 60 ft = Width of the playing field

107ft = Length of the playing field

Step-by-step explanation:

A playing field is Rectangular is shape, hence,

The formula for Perimeter of a rectangle = 2(L + W)

P = 334 ft

L = 47 + W

W = W

Hence we input these values in the formula and we have:

334 = 2(47 + W + W)

334 = 2(47 + 2W)

334 = 94 + 4W

334 - 94 = 4W

240 = 4W

W = 240/4

W = 60

There fore, the width of this playing field = 60 ft

The length of this rectangle is calculated as:

47 + W

47 + 60

= 107 ft

The length of this playing field = 107ft

Therefore the dimensions of the rectangle = 60ft by 107ft

6 0
3 years ago
P(×)= x(2x + 1)- 6x-3 <br>Factorize p(×) ​
kherson [118]

Step-by-step explanation:

P(X)=2x²-5x-3 is in the form ax²+bx+c

Using quadratic equation

x={-b±√(b²-4ac)}/2a

x=3,-1/2

4 0
3 years ago
If the integral of the product of x squared and e raised to the negative 4 times x power, dx equals the product of negative 1 ov
Nataly_w [17]

Answer:

A + B + E = 32

Step-by-step explanation:

Given

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Required

Find A +B + E

We have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

Using integration by parts

\int {u} \, dv = uv - \int vdu

Where

u = x^2 and dv = e^{-4x}dx

Solve for du (differentiate u)

du = 2x\ dx

Solve for v (integrate dv)

v = -\frac{1}{4}e^{-4x}

So, we have:

\int {u} \, dv = uv - \int vdu

\int\limits {x^2\cdot e^{-4x}} \, dx  = x^2 *-\frac{1}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x} 2xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} - \int -\frac{1}{2}e^{-4x} xdx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

-----------------------------------------------------------------------

Solving

\int xe^{-4x} dx

Integration by parts

u = x ---- du = dx

dv = e^{-4x}dx ---------- v = -\frac{1}{4}e^{-4x}

So:

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} - \int -\frac{1}{4}e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x} + \int e^{-4x}\ dx

\int xe^{-4x} dx = -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}

So, we have:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} \int xe^{-4x} dx

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} +\frac{1}{2} [ -\frac{x}{4}e^{-4x}  -\frac{1}{4}e^{-4x}]

Open bracket

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{x^2}{4}e^{-4x} -\frac{x}{8}e^{-4x}  -\frac{1}{8}e^{-4x}

Factor out e^{-4x}

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{x^2}{4} -\frac{x}{8} -\frac{1}{8}]e^{-4x}

Rewrite as:

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{4}x^2 -\frac{1}{8}x -\frac{1}{8}]e^{-4x}

Recall that:

\int\limits {x^2\cdot e^{-4x}} \, dx  = -\frac{1}{64}e^{-4x}[Ax^2 + Bx + E]C

\int\limits {x^2\cdot e^{-4x}} \, dx  = [-\frac{1}{64}Ax^2 -\frac{1}{64} Bx -\frac{1}{64} E]Ce^{-4x}

By comparison:

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

-\frac{1}{8}x = -\frac{1}{64}Bx

-\frac{1}{8} = -\frac{1}{64}E

Solve A, B and C

-\frac{1}{4}x^2 = -\frac{1}{64}Ax^2

Divide by -x^2

\frac{1}{4} = \frac{1}{64}A

Multiply by 64

64 * \frac{1}{4} = A

A =16

-\frac{1}{8}x = -\frac{1}{64}Bx

Divide by -x

\frac{1}{8} = \frac{1}{64}B

Multiply by 64

64 * \frac{1}{8} = \frac{1}{64}B*64

B = 8

-\frac{1}{8} = -\frac{1}{64}E

Multiply by -64

-64 * -\frac{1}{8} = -\frac{1}{64}E * -64

E = 8

So:

A + B + E = 16 +8+8

A + B + E = 32

4 0
3 years ago
A line goes through the points (7,8) and (3, 10). What is the slope of the line?
nekit [7.7K]

Answer:

slope = m = -\dfrac{1}{2}

Step-by-step explanation:

slope = m = \dfrac{y_2 - y_1}{x_2 - x_1}

slope = m = \dfrac{10 - 8}{3 - 7}

slope = m = \dfrac{2}{-4}

slope = m = -\dfrac{1}{2}

6 0
4 years ago
Other questions:
  • Answer the picture below! 10 points
    7·1 answer
  • Which ones are true
    11·1 answer
  • Write an equation and find slope for the points (0,8) (6,8)
    9·1 answer
  • The empty gas tank of a truck needs to be completely filled. the tank is shaped like a cylinder that is 3.5 ft long with a diame
    14·1 answer
  • What is 24-18 on mat on area inches
    11·2 answers
  • Can someone help me with this?
    13·1 answer
  • PLEASE HELP ME I HAVE TO PASS THIS TEST<br><br> 30 POINTS
    6·2 answers
  • The table contains the lengths of the sides of different triangles. Do the given side lengths form a right triangle?
    5·1 answer
  • M&lt;1=115<br> M&lt;2<br> Could y’all give answers for all though
    8·2 answers
  • The function f(x) = 2* and g(x) = f(x) + k. If k = 2, what can be concluded about the graph of
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!