1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
5

Please, someone, help very hard

Mathematics
1 answer:
Law Incorporation [45]3 years ago
3 0

Answer:

A. G'(5) = 20

B. G'(5) = -1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Product Rule]:                                                                              \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                             \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

[Given] F(5) = 4, F'(5) = 4, H(5) = 2, H'(5) = 3

[Given] A. G(z) = F(z) · H(z)

[Given] B. G(w) = F(w) / H(w)

[Find] G'(5)

<u>Step 2: Differentiate</u>

A. G(z) = F(z) · H(z)

  1. [Derivative] Product Rule:                                                                              G'(z) = F'(z)H(z) + F(z)H'(z)

B. G(w) = F(w) / H(w)

  1. [Derivative] Quotient Rule:                                                                             G'(w) = [F'(w)H(w) - F(w)H'(w)] / H²(w)

<u>Step 3: Evaluate</u>

A. G'(5)

  1. Substitute in <em>x </em>[Function]:                                                                              G'(5) = F'(5)H(5) + F(5)H'(5)
  2. Substitute in function values:                                                                        G'(5) = 4(2) + 4(3)
  3. Multiply:                                                                                                           G'(5) = 8 + 12
  4. Add:                                                                                                                 G'(5) = 20

B. G'(5)

  1. Substitute in <em>x</em> [Function]:                                                                              G'(5) = [F'(5)H(5) - F(5)H'(5)] / H²(5)
  2. Substitute in function values:                                                                        G'(5) = [4(2) - 4(3)] / 2²
  3. Exponents:                                                                                                      G'(5) = [4(2) - 4(3)] / 4
  4. [Brackets] Multiply:                                                                                         G'(5) = [8 - 12] / 4
  5. [Brackets] Subtract:                                                                                        G'(5) = -4 / 4
  6. Divide:                                                                                                             G'(5) = -1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Mr. Wilson drives 450 miles in seven hours. At this rate, about how many miles does he drive in six hours? A) 101 B) 254 C) 340
Deffense [45]
I think D is the answer hope this helps
5 0
3 years ago
1/6 minus 1/10 simplifiy
andriy [413]
1/6 -1/10 
= 10/60 - 6/60
= 4/60
= 1/15
6 0
3 years ago
Read 2 more answers
a. A 2017 poll found that 56​% of college students were very confident that their major will lead to a good job. If 15 college s
lesya [120]

Answer:

0.01083 or 1.083%

Step-by-step explanation:

This problem can be modeled as a binomial probability model with probability of success p = 0.56.

The probability of x=13 successes (a college student being very confident their major would lead to a good job) in a number of trials of n=15 is:

P(X=x) = \frac{n!}{(n-x)!x!} *p^x*(1-p)^{n-x}\\P(X=13) = \frac{15!}{(15-13)!13!} *0.56^{13}*(1-0.56)^{15-13}\\P(X=13) = 0.01083=1.083\%

The probability is 0.01083 or 1.083%.

8 0
3 years ago
This statement is justified by which property of equality?
Galina-37 [17]

Answer:

symmetric property

Step-by-step explanation:

with symmetric property if x=y then both values on either side of the equal sign will be equal

4 0
3 years ago
4x - 5 = 11 is an example of a
Tanya [424]

Answer:

MATH PROBLEM

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Candy draws a square design with a side length of x inches for the window at the pet shop. She takes the design to the printer a
    6·1 answer
  • A university offers 3 calculus classes: Math 2A, 2B and 2C. In both parts, you are given data about a group of students who have
    7·1 answer
  • Matt is trying to sell 60 cookies and brownies for 2.50 for brownies and 2.00 for cookies and needs a totlal of $100
    11·2 answers
  • jill has $9.96 in nickles,pennies, and dollar bills. she has 12 more pennies than nickles and fove fewer dollar bills than nickl
    7·1 answer
  • What is 14/15 divided by 2/5
    14·1 answer
  • What is the equation of the line with a slope of 4 and a y-intercept of —2?
    13·1 answer
  • Plz help I will mark as brainliest. Jason has $60 to spend. He wants to purchase a bag for $30, one calculator for $13,3
    12·1 answer
  • A rectangular balcony is 14 feet long and 6 feet wide. What is its area?
    6·2 answers
  • What is the solution set represented by this number line graph?
    13·1 answer
  • Where are mc donalds
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!