1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
5

Please, someone, help very hard

Mathematics
1 answer:
Law Incorporation [45]3 years ago
3 0

Answer:

A. G'(5) = 20

B. G'(5) = -1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Product Rule]:                                                                              \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                             \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

[Given] F(5) = 4, F'(5) = 4, H(5) = 2, H'(5) = 3

[Given] A. G(z) = F(z) · H(z)

[Given] B. G(w) = F(w) / H(w)

[Find] G'(5)

<u>Step 2: Differentiate</u>

A. G(z) = F(z) · H(z)

  1. [Derivative] Product Rule:                                                                              G'(z) = F'(z)H(z) + F(z)H'(z)

B. G(w) = F(w) / H(w)

  1. [Derivative] Quotient Rule:                                                                             G'(w) = [F'(w)H(w) - F(w)H'(w)] / H²(w)

<u>Step 3: Evaluate</u>

A. G'(5)

  1. Substitute in <em>x </em>[Function]:                                                                              G'(5) = F'(5)H(5) + F(5)H'(5)
  2. Substitute in function values:                                                                        G'(5) = 4(2) + 4(3)
  3. Multiply:                                                                                                           G'(5) = 8 + 12
  4. Add:                                                                                                                 G'(5) = 20

B. G'(5)

  1. Substitute in <em>x</em> [Function]:                                                                              G'(5) = [F'(5)H(5) - F(5)H'(5)] / H²(5)
  2. Substitute in function values:                                                                        G'(5) = [4(2) - 4(3)] / 2²
  3. Exponents:                                                                                                      G'(5) = [4(2) - 4(3)] / 4
  4. [Brackets] Multiply:                                                                                         G'(5) = [8 - 12] / 4
  5. [Brackets] Subtract:                                                                                        G'(5) = -4 / 4
  6. Divide:                                                                                                             G'(5) = -1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Find the 53rd term of the arithmetic sequence -12, -1, 10
RSB [31]

440 is the answer

Tn=a+(n-1)d

Tn=53

a= -12

n=53

d= 11

-12+(53-1)11 = 440

5 0
3 years ago
Read 2 more answers
Find the given derivative by finding the first few derivatives and observing the pattern that occurs. d103 dx103 (sin(x))
aleksandrvk [35]
To find \frac{d^{103}}{dx^{103}} \left(\sin{(x)}\right), we find the first few derivatives and observe the pattern that occurs.

\frac{d}{dx} (\sin{(x)})=\cos{(x)} \\  \\  \frac{d^2}{dx^2} (\sin{(x)})= \frac{d}{dx} (\cos{(x)})=-\sin{(x)} \\  \\ \frac{d^3}{dx^3} (\sin{(x)})= -\frac{d}{dx} (\sin{(x)})=-\cos{(x)} \\  \\ \frac{d^4}{dx^4} (\sin{(x)})= -\frac{d}{dx} (\cos{(x)})=-(-\sin{(x)})=\sin{(x)} \\  \\ \frac{d^5}{dx^5} (\sin{(x)})=  \frac{d}{dx} (\sin{(x)})=\cos{(x)}

As can be seen above, it can be seen that the continuos derivative of sin (x) is a sequence which repeats after every four terms.

Thus,

\frac{d^{103}}{dx^{103}} \left(\sin{(x)}\right)= \frac{d^{4(25)+3}}{dx^{4(25)+3}} \left(\sin{(x)}\right) \\  \\ = \frac{d^3}{dx^3} \left(\sin{(x)}\right)=-\cos{(x)}

Therefore,

\frac{d^{103}}{dx^{103}} \left(\sin{(x)}\right)=-\cos{(x)}.
8 0
3 years ago
How do I solve 7 1/5 divided by 2 1/15? (Pls show all steps like simplify, common denominator,etc)
Basile [38]
If you scroll up I answered a previous question like this in the same subject
5 0
3 years ago
Read 2 more answers
find the slope of the line that passes through the given two points state if the slope is positive, negative, zero or undefined|
Lilit [14]
I hope this helpss.

3 0
3 years ago
Which expression is equivalent to -14-(-2)?<br> 14-2<br> O 14+2<br> 0 -14+2<br> 14-2
tino4ka555 [31]

Answer:

-14 +2

Step-by-step explanation:

because you would do kcc aka keep change change

you would keep -14 change the minus to a addition sign and change the -2 to a positive 2

8 0
3 years ago
Other questions:
  • A fair die is rolled 4 times. What is the probability of having no 3 and no 4 among the rolls? Round your answer to three decima
    8·1 answer
  • How do you solve 1/3x+5=9
    9·2 answers
  • Abdul wants to hang a square poster that measure 1 1/2 feet on a side in the center of a 12-foot-long wall. How far from the end
    15·1 answer
  • Evaluate f(3) for the piecwise function which value represents f(3)
    13·1 answer
  • 3. The volume of a cube is 216 cm'. What is the length of one side?
    6·2 answers
  • Please help me I really need asap
    12·2 answers
  • Please help fast ill give 50 points
    11·1 answer
  • Please help with this?!?
    9·1 answer
  • What is the value of P ?
    9·2 answers
  • Can someone please help me?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!