Based on the calculations, the length of GF is equal to 26 units.
<h3>How to find the length of GF?</h3>
In Geometry, the centroid of any triangle always divides the lines in a ratio of 2:1. Thus, G divides line B F as follows:
2DG = BD
2(9x + 2) = 40
18x + 4 = 40
18x = 40 - 4
x = 36/18
x = 2.
Similarly, G divides line A F as follows:
2GF = A F
GF = A F/2
GF = (19x + 14)/2
GF = (19(2) + 14)/2
GF = 52/2
GF = 26 units.
Read more on centroid here: brainly.com/question/15015349
#SPJ1
Answer:
The answer to your question is 191
Step-by-step explanation:
Data
Total number of students = 464
Students in a band = 89
Students in sports = 215
Students in both activities = 31
Students do not practice any activity = ?
Process
1.- Subtract 31 from the students in a band and students in a sport
89 - 31 = 58
215 - 31 = 184
2.- Add the previous results anfd the number of students that practice both activities
58 + 184 + 31 = 273
3.- Subtract 273 from the total number of students
464 - 273 = 191
4.- Conclusion
191 students are not involved in any activity.
Answer:
y+7 = -3 ( x-4)
Step-by-step explanation:
First find two points on the graph to find the slope
( 1,2) and ( 3,-4)
The slope is given by
m = ( y2-y1)/(x2-x1)
m = ( -4-2)/(3-1)
= -6/2
=-3
We can use the point slope form
y - y1 = m(x-x1) where m is the slope and x1,y1 is a point on the line
We have two choices with a slope of -3
We can either use and x coordinate of -2 or 4
for -2, the y coordinate is not shown
for 4 , the y coordinate is -7
Using ( 4, -7) and m = -3
y--7 = -3( x- 4)
y+7 = -3 ( x-4)
Answer:
I gave you the answer
Step-by-step explanation:
I hope
<h2><em>Answer:</em></h2><h2><em>Answer:x = 7+4√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3</em></h2><h2 /><h2><em>Answer:x = 7+4√3To find √x we proceed,√x = √(7+4√3)√x = √(7+2x2√3)√x = √(7+2√3x4)√x = √(3+4+2√3x4)….. {writing 7 = 3+4}If we observe RHS of √x we observe form of√(a² + b² +2ab) where a=√3 and b =√4Hence, √x =√(√3 +√4)² = √3 + √4 = 2+√3√x = 2+√31/√x = 1/(2+√3)Multiplying both numerator and denominator by 2 - √3, we get1/√x = (2-√3)/(2-√3)(2+√3) = (2-√3)/(2²-√3²) =1/√x = 2-√3Hence √x +1/√x = 2+√3 +2 -√3 = 4</em></h2><h2 />