Answer:
Choice D is correct
Step-by-step explanation:
The first step is to write the polar equation of the conic section in standard form by dividing both the numerator and the denominator by 2;

The eccentricity of this conic section is thus 1, the coefficient of cos θ. Thus, this conic section is a parabola since its eccentricity is 1.
The value of the directrix is determined as;
d = k/e = 3/1 = 3
The denominator of the polar equation of this conic section contains (-cos θ) which implies that this parabola opens towards the right and thus the equation of its directrix is;
x = -3
Thus, the polar equation represents a parabola that opens towards the right with a directrix located at x = -3. Choice D fits this criteria
Answer:
-2+k.5/n
Step-by-step explanation:
nsnsndksksnskksnsksnsnksnwkbsbssksj sosnanskzbwkssbkwwnkwsnwosbsndosnkssneosnenkssbkssnnkbwjwoswnks
Answer:
(A)
Step-by-step explanation:
A)The degree of the function is odd, so the ends of the graph continue in opposite directions. Because the leading coefficient is positive, the left side of the graph continues down the coordinate plane and the right side continues upward.
Hello!
If you want to find an equation that is parallel to another equation, and passing through the point (1, 4), you need to create a new equation with the same slope, you need to substitute the given point into the new equation to find the y-intercept.
m = 3, y = 3x + b (substitute the ordered pair)
4 = 3(1) + b (simplify)
4 = 3 + b (subtract 3 from both sides)
b = 1
Therefore, the line parallel to the line y = 3x - 2 and passing through the point (1, 4) is y = 3x + 1.