1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]3 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
(50 points) need help with khan practice geometry
Vedmedyk [2.9K]

The awnser is 60 because

It is a cube so it has the smae amout of sides

8 0
2 years ago
I need help please?!!!
malfutka [58]

a<-28 I think. Can I have a Brainliest

6 0
4 years ago
Read 2 more answers
3,9,6,9,27,24,27,81,78,81,243,?find out last figure to complete series
Tatiana [17]
The next number is 240
6 0
3 years ago
HI PLEASE HELP BELOW IM REALL IN NEED OF HELP
aalyn [17]
The answer is 3, because the other two sides are 3 and the angle is 60, so the other angles will have to be 60. That means it is an equilateral triangle.
3 0
4 years ago
Evaluate x-(x-y3)); use x=9 and y=1
Ilya [14]

Answer:

-15

Step-by-step explanation:

9-(9-1*3)

9-8*3

9-24

-15

4 0
3 years ago
Read 2 more answers
Other questions:
  • Help worth 25 points
    11·2 answers
  • A school wants to know how the community feels about a merger with another school. The school surveys the parents of the student
    10·1 answer
  • Find the slope of the line that passes through (3, 3) and (8,9).
    7·1 answer
  • The ratio of men to women in New York is 3:4. What is the fraction of men in NYC? A.  3/4 B.  1/4 C.  1/3 D.  3/7 
    14·1 answer
  • Explain how to use the combine place vales strategy to fine 223- 119
    5·1 answer
  • jacque purchased 6 tickets to a hockey game. if the total cost was $225 what is the cost for one ticket
    8·2 answers
  • Find the equation to the line , Please help !!!!
    6·2 answers
  • If sin=3 by 5 and cos =4 by 5 find tan​
    10·1 answer
  • What is arithmetic sequence
    8·1 answer
  • If Jenny has 43 apples, and gives 12 to John. How many apples does Jenny have left ?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!