1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]2 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
Only 30 minutes please help​
andrezito [222]

Answer:

B, and i don't for the second one

Step-by-step explanation:

4 0
3 years ago
Solve the equation on the interval [0,2π). cos^4x=cos^4xcscx
Alisiya [41]
\bf cos^4(x)=cos^4(x)csc(x)\\\\&#10;-----------------------------\\\\&#10;cos^4(x)=cos^4(x)\cfrac{1}{sin(x)}\implies cos^4(x)=\cfrac{cos^4(x)}{sin(x)}&#10;\\\\\\&#10;cos^4(x)sin(x)=cos^4(x)\implies cos^4(x)sin(x)-cos^4(x)=0&#10;\\\\\\&#10;cos^4(x)[sin(x)-1]=0\to &#10;\begin{cases}&#10;cos^4(x)=0\to x=cos^{-1}(0)\\&#10;----------\\&#10;sin(x)-1=0\\&#10;sin(x)=1\to x=sin^{-1}(1)&#10;\end{cases}

\bf \measuredangle x = cos^{-1}(0)\implies \measuredangle x = &#10;\begin{cases}&#10;\frac{\pi }{2}\\\\&#10;\frac{3\pi }{2}&#10;\end{cases}&#10;\\\\\\&#10;\measuredangle x=sin^{-1}(1)\implies \measuredangle x=\frac{\pi }{2}

3 0
3 years ago
Pls help me pls pls
bekas [8.4K]

Answer:

190.8

Step-by-step explanation:

Im pretty sure my math is wrong but i hope this helps

6 0
2 years ago
Read 2 more answers
The formula for perimeter of a rectangle is P=2L+2W where L is the length and w is the width. A rectangle has a perimeter of 24
Black_prince [1.1K]
24=2(w+4)+2w=4w+8, subtract 8 from both sides 4w=16, w=4. L=w+4 so l is 8. The dimensions are 8 by 4.
8 0
2 years ago
I have 6.5 yards of fabric and if the fabric costs $3.99 per yard how much will I spend
Masteriza [31]

Answer: You will spend 25.94$

Step-by-step explanation:

6.5 yards by 3.99 per yard = 6.5 times 3.99 = 25.935 witch rounds too 25.94$

4 0
2 years ago
Read 2 more answers
Other questions:
  • What is 3r plus 3s in ditributed property
    7·1 answer
  • Last year 225 students attended the annual school dance at CCMS. This year 211 students attended the dance. Find the percent of
    6·2 answers
  • What is the distance between these points? Please help:)
    9·1 answer
  • Write a verbal sentence for <br> N-8=16
    13·1 answer
  • What is 7 tenths and write as a fractions ?
    8·2 answers
  • C (x) = 0.05x+9.25<br> What is the total rental cost if Jose drove 40 miles?<br> V dollars<br> ?
    15·1 answer
  • I NEED HELP!!
    12·2 answers
  • A circular garden has a radius of 3 meters. What is the area of the garden? Write your answer using π. Show your work.
    10·1 answer
  • What is -9+(-6)-7-(-12) simplified?
    9·1 answer
  • Sparky the Bear is atop a 100 foot tower. He is looking out over a fairly level area for careless people who might start fires.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!