1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]2 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
Okay so my teacher gave me this question "5=-3+y" can someone help me under stand it??
umka2103 [35]

Answer:

5=-3+y

inverse property. -3 + 3 = 0 so we add 3 to both sides to cancel out the -3 to ISOLATE the y.

5 = -3 + y

-3 + 3

-3 + 3 = 0

5+3 = 8

8 = y.

y = 8 basically.  I hope that helped.

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Factor out: <br> 5y^2-2y-7
KatRina [158]
5y^2-2y-7=0
Product(x)= -35
Addition(+)= -2
~=5 and -7
5y^2+5y-7y-7=0
5y(y+1)-7(y+1)=0
(5y-7) (y+1)
5 0
3 years ago
Im caca at math please help!
Diano4ka-milaya [45]

Answer:

Option B)  \frac{1}{6} Inches

Step-by-step explanation:

Maria's Centipede = 1\frac{1}{12} inches = \frac{13}{12} inches

Jerome Centipede = \frac{11}{12}

<u><em>To see how much longer Maria's centipede was than Jerome's, we'll subtract the two:</em></u>

=> \frac{13}{12} -\frac{11}{12}

=> \frac{13-11}{12}

=> \frac{2}{12} inches

=> \frac{1}{6} Inches

4 0
3 years ago
420÷14 show picture please
Andru [333]
14/420
14*3=42
14*0=0
Ur answer is 30
Prove
30*14=420
5 0
3 years ago
Read 2 more answers
Determine whether each table represents a linear quadratic or exponential function
Kryger [21]

Answer:

Table A: exponencial function

Table B: quadratic function

Table C: linear function

Step-by-step explanation:

Table A:

for x from 1 to 2, Y increased by 6

for x from 2 to 3, Y increased by 18

for x from 3 to 4, Y increased by 54

So we can see that the values of Y are being multiplied by 3 for each increment of x, so this table represents an exponencial function.

Table B:

for x from 1 to 2, Y increased by 6

for x from 2 to 3, Y increased by 10

for x from 3 to 4, Y increased by 14

The increment of Y is higher than a linear increment and smaller than an exponencial increment, so this is the quadratic function.

Table C:

for x from 3 to 6, Y increased by -2

for x from 6 to 9, Y increased by -2

for x from 9 to 12, Y increased by -2

The increment of Y is constant for the same increment of X, so this is a linear function.

7 0
3 years ago
Other questions:
  • What percent of 145 is 52.2
    8·1 answer
  • 5x+y=4<br><br>i don't know what to do here.​
    13·2 answers
  • BRAINLIESTT ASAP! PLEASE HELP ME :)
    6·1 answer
  • The beer-lambert formula determines the intensity of light in water (measured in lumens) at a depth of x feet. find the intensit
    8·1 answer
  • Explain please with details
    12·1 answer
  • Name all things on the list that are renewable or nonrenewable
    10·2 answers
  • Can somebody please help me and explain a bit, it's for a test grade :(
    13·1 answer
  • Help plzzzzzzzzzzzzz
    15·1 answer
  • Dwight can run four times faster than Jim. If Jim runs a mile in 3 minutes, which equation would allow you to solve for Dwight's
    9·1 answer
  • (02.02 LC)<br> If g(x) = x2 + 2, find g(3).<br> O9<br> O8<br> O 11<br> O6
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!