1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]2 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
Which rigid transformation would map ΔAQR to ΔAKP? a rotation about point A a reflection across the line containing AR a reflect
Jobisdone [24]

Answer:

a rotation about point A

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
What is the center and radius of the circle with equation x2 + y2 - 4x + 22y + 61 = 0?
lesantik [10]
Hello,

x^2+y^2-4x+22y+61=0\\\\&#10;(x^2-4x+4) +(y^2+22y+121)-121-4+61=0\\\\&#10;(x-2)^2+(y+11)^2=64&#10;&#10;&#10;

Center is (2,-11) and radius is 8
6 0
3 years ago
18x^2+21x-9 I need to figure out how to work this problem
shtirl [24]
18x^2+21x-9=3(6x^2)+3(7x)-3(3)\\\\=3(6x^2+7x-3)=3(6x^2+9x-2x-3)\\\\=3[3x(2x)+3x(3)-1(2x)-1(3)]\\\\=3[3x(2x+3)-1(2x+3)]\\\\=\boxed{3(2x+3)(3x-1)}
3 0
3 years ago
Read 2 more answers
The 24 students in Mr. Brown’s homeroom sold 72 magazine subscriptions. The 28 students in Mrs. Garcia‘s homeroom sold 98 magazi
KATRIN_1 [288]
Mr. brown students sold 3 magazines each while Mrs. Garcia students sold 3.5 magazines each. Mrs. Garcia sold more magazines per student
3 0
3 years ago
The sum of two numbers is 31. The product of the two numbers is 150. What are the numbers?
mestny [16]
One way is to factor 150 and add the factors
150+1=151, nope
2+75=77, nope
3+50=53, nope
5+30=35, nope
6+25=31, yep

the numbers are 6 and 25
7 0
3 years ago
Read 2 more answers
Other questions:
  • What is something you might see a scientist doing?
    10·2 answers
  • REALLY NEED HELP ON THESE 3 MATH QUESTIONS!!! (20 PTS)
    8·1 answer
  • Jenna had M mystery novels she gave half of them to a friend, then buy five more which expression get the number of mystery nove
    6·1 answer
  • 2.) Fill in the blank.
    5·1 answer
  • A bag contains white marbles and red marbles, 32 in total. The number of white marbles is 7 less than 2 times the number of red
    10·1 answer
  • Are regular polygons always the same?
    8·2 answers
  • What is the value of the expression (18-3)•2 ²+15?
    10·2 answers
  • Cliff is trying to make a set of parallel lines in a coordinate plane intersect at a perpendicular angle. Which strategy would w
    7·1 answer
  • 1. What is the distance between the points (-2, 5) and (4, 7)? Round to the nearest tenth.
    6·2 answers
  • A 2-liter bottle of juice costs $2.80. A box containing six 1/2 liter bottles sells for $3.90. Which option has a higher cost pe
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!