1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]3 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
Pls help meeee!<br> and show work and explain so I can understand better.
olchik [2.2K]

Answer:

806 meters

Step-by-step explanation:

3 0
3 years ago
Trigonometric question, 30 points, will give brainliest.
zheka24 [161]

hmmm first off let's convert the √3 +i to trigonometric form, and then use De Moivre's root theorem, bearing in mind that √3 and i or 1i are both positive, meaning we're on the I Quadrant.

\bf (\stackrel{a}{\sqrt{3}}~,~\stackrel{b}{1i})\qquad \begin{cases} r=&\sqrt{(\sqrt{3})^2+1^2}\\ &\sqrt{3+1}\\ &2\\ \theta =&tan^{-1}\left( \frac{1}{\sqrt{3}}\right)\\\\ &tan^{-1}\left( \frac{\sqrt{3}}{3} \right)\\ &\frac{\pi }{6} \end{cases}~\hfill \implies ~\hfill 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right]

\bf ~\dotfill\\\\ \qquad \textit{power of two complex numbers} \\\\\ [\quad r[cos(\theta)+isin(\theta)]\quad ]^n\implies r^n[cos(n\cdot \theta)+isin(n\cdot \theta)] \\\\[-0.35em] ~\dotfill

\bf \left[ 2\left[ cos\left( \frac{\pi }{6}\right) +i~sin\left( \frac{\pi }{6}\right) \right] \right]^3\implies 2^3\left[ cos\left( 3\cdot \frac{\pi }{6}\right) +i~sin\left( 3\cdot \frac{\pi }{6}\right) \right] \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 8\left[cos\left( \frac{\pi }{2} \right) +i~sin\left( \frac{\pi }{2} \right) \right]~\hfill

3 0
4 years ago
Arun's family took a road trip to Niagara Falls. Arun fell asleep 69% of the way through the trip. If Arun fell asleep after the
pashok25 [27]
1,000 miles, also is this some sort of joke question?
6 0
3 years ago
The volume of a prism changed from 20 to 540 after a dilation. What was the scale factor of the dilation
riadik2000 [5.3K]
Find cube root of 20 and 540 to find ratio of the height then use the formula image/object xx HOPE THAT HELPS :)
7 0
3 years ago
A restaurantis planning to make changes to its menu. In order to decide which potential menu items are most popular with the cit
maw [93]

Answer:

Simple random sampling survey method

Step-by-step explanation:

A simple random sampling is an unbiased survey technique Hence it will represent all the parts of the city's population.

In statistics, a simple random sample is a subset of individuals (a sample) chosen from a larger set (a population). Each individual is chosen randomly and entirely by chance, such that each individual has the same probability of being chosen at any stage during the sampling process

7 0
3 years ago
Read 2 more answers
Other questions:
  • Triangle ABC has been dilated to triangle A'B'C'. Which factor was used?
    11·2 answers
  • In a test of a​ gender-selection technique, results consisted of 229 baby girls and 7 baby boys. Based on this​ result, what is
    6·1 answer
  • Which is the smallest 5 digit number that ends in 9 and reads the same forward as well as backwards
    15·1 answer
  • How do you do this question?
    13·1 answer
  • At the circus Jon saw 3 unicycles how many wheels are on the unicycles in all
    13·2 answers
  • It would really mean a lot if someone helps me
    9·1 answer
  • Find the lengths of the missing side . Simplify all radicals !!!<br> help mee!!!!!!
    10·1 answer
  • Which of the following equations describes the graph?
    15·2 answers
  • 1.15 x 10 negative 5 power
    13·1 answer
  • Dia
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!