1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
2 years ago
15

How do I solve this?

Mathematics
1 answer:
Bogdan [553]2 years ago
3 0

(i) Each of <em>u</em>, <em>v</em>, and <em>w</em> are vectors in R<em>ⁿ</em>, so they each have size <em>n</em> × 1 (i.e. <em>n</em> rows and 1 column). So <em>u </em>and <em>v</em> both have size <em>n</em> × 1, while <em>w</em>ᵀ has size 1 × <em>n</em>.

<em>M</em> is an <em>n</em> × <em>n</em> matrix, so the matrix <em>A</em> has been partitioned into the blocks

A=\begin{pmatrix}M_{n\times n}&\mathbf u_{n\times 1}\\\mathbf w^\top_{1\times n}&\alpha\end{pmatrix}

where <em>α</em> is a scalar with size 1 × 1. So <em>A</em> has size (<em>n</em> + 1) × (<em>n</em> + 1).

(ii) Multiplying both sides (on the left is the only sensible way) by the given matrix gives

\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}M&\mathbf u\\\mathbf w^\top&\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}M^{-1}M&M^{-1}\mathbf u\\-\mathbf w^\top M^{-1}M+\mathbf w^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

and of course <em>M</em> ⁻¹ <em>M</em> = <em>I</em> (the identity matrix), so

-<em>w</em>ᵀ <em>M</em> ⁻¹ <em>M</em>  + <em>w</em>ᵀ = -<em>w</em>ᵀ + <em>w</em>ᵀ = 0ᵀ (the zero vector transposed)

(iii) Simplifying the system further gives

\begin{pmatrix}I&M^{-1}\mathbf u\\\mathbf 0^\top&-\mathbf w^\top M^{-1}\mathbf u+\alpha\end{pmatrix}\begin{pmatrix}\mathbf x\\x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}&\mathbf 0\\-\mathbf w^\top M^{-1}&1\end{pmatrix}\begin{pmatrix}\mathbf v\\v_{n+1}\end{pmatrix}

\begin{pmatrix}\mathbf x+x_{n+1}M^{-1}\mathbf u\\(\alpha-\mathbf w^\top M^{-1}\mathbf u)x_{n+1}\end{pmatrix}=\begin{pmatrix}M^{-1}\mathbf v\\-\mathbf w^\top M^{-1}\mathbf v+v_{n+1}\end{pmatrix}

So now, setting <em>y</em> = <em>M</em> ⁻¹<em>u</em> and <em>z</em> = <em>M</em> ⁻¹ <em>v</em> gives

\begin{pmatrix}\mathbf x+x_{n+1}\mathbf y\\(\alpha-\mathbf w^\top\mathbf y)x_{n+1}\end{pmatrix}=\begin{pmatrix}\mathbf z\\-\mathbf w^\top \mathbf z+v_{n+1}\end{pmatrix}

Given that <em>α</em> - <em>w</em>ᵀ<em>y</em> ≠ 0, it follows that

x_{n+1}=\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}

(iv) Combining the result from (iii) with the first row gives

\mathbf x+x_{n+1}\mathbf y=\mathbf z

\mathbf x=\mathbf z-x_{n+1}\mathbf y

\mathbf x=\mathbf z-\dfrac{v_{n+1}-\mathbf w^\top\mathbf z}{\alpha-\mathbf w^\top\mathbf y}\mathbf y

You might be interested in
Factor the four-term polynomial.<br><br> xz + x + yz + y
Lesechka [4]
If you factor it you will get:
(z+ 1)(x + y)
5 0
3 years ago
Read 2 more answers
Find the simplified form of the expression. Given your answer in scientific notation (8 x 10^4)(9 x 10^8)
Lady bird [3.3K]

(8 \times  {10}^{4} )(9 \times  {10}^{8} ) \\  = 8 \times 9 \times  {10}^{4}  \times  {10}^{8 }  \\  = 72 \times {10}^{4 + 8}  \\  = 7.2 \times 10 \times  {10}^{12}  \\  = 7.2 \times  {10}^{13}

This is the answer with step by step explanation

6 0
3 years ago
Suppose you invest 1,600 at an annual interest rate of 7.9% compounded continuously. How much will you have in the account after
Elina [12.6K]

\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad  \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to& \$1600\\ r=rate\to 7.9\%\to \frac{7.9}{100}\to &0.079\\ t=years\to &10 \end{cases} \\\\\\ A=1600e^{0.079\cdot 10}\implies A=1600e^{0.79}\implies A\approx 3525.434

6 0
3 years ago
Is it proportional?Please help me
kvv77 [185]

I believe yes

Each time it goes up by one, it is always increasing by the same amount each time

6 0
3 years ago
Read 2 more answers
Free pts for you awesome people! Have a wonderful day!​
tia_tia [17]
Have a great day as well! sending good vibes your way <3
6 0
3 years ago
Read 2 more answers
Other questions:
  • The first discount on a camera was 18%. The second discount was 20%. After these two discounts the price was $328. What was the
    12·1 answer
  • jason has 90$ to spend.He wants to purchase a bag for $30,one eraser for$10 ,and three pencils.Each of the pencils cost the same
    12·2 answers
  • Following diagram find the missing measure.
    8·1 answer
  • I don’t understand how to do this problem.
    14·2 answers
  • Solve for x in the triangle. Round answer to the nearest tenth.
    12·2 answers
  • Plz can anyone calculate this equation for me. I dont have a
    5·1 answer
  • Mr. Grant made a bar graph with student scores on a test. He noted an overall distribution shape skewed to the right. Based on t
    13·1 answer
  • Pls help me number 8 plsssss
    14·1 answer
  • Write the equation in point slope form
    8·2 answers
  • What are the x-intercepts of this conic section?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!