Answer:
1. Chromatin condense into chromosomes.
4. Homologous chromosomes pair up (formation of tetrads).
5. Homologous chromosomes separate and move to poles.
2. Sister chromatids separate.
3. Chromosomes unravel in to chromatin.
Explanation:
This question portrays the process of meiosis in a cell. The ordered sequence of events in the options are:
1. Chromatin condense into chromosomes - This process occurs in the Prophase stage. Prior to the cell division, the nuclear material is found as Chromatin material. This Chromatin material then undergoes condensation to form visible chromosomes.
4. Homologous chromosomes pair up (formation of tetrads) - This process also occurs during the Prophase stage of meiosis I. In this stage, homologous chromosomes (similar but non-identical chromosomes received from each parent) are paired up side by side to form a structure known as TETRAD or BIVALENT.
5. Homologous chromosomes separate and move to poles - This process characterizes the Anaphase stage of meiosis I. Homologous chromosomes are pulled apart to opposite poles of the cell by spindle microtubules.
2. Sister chromatids separate - After meiosis I, meiosis II involving sister chromatids instead of homologous chromosomes follows. In the Anaphase stage of meiosis II specifically, sister chromatids are pulled apart towards opposite poles of the cell.
3. Chromosomes unravel in to chromatin - After the whole division process i.e. karyokinesis (division of the nuclear material), the chromosomes begin to unravel to form the CHROMATIN threads once again. This process occurs in the Telophase stage of meiosis.
Answer:
is also known to function in nerve development, fertility, and viability. When human and mouse genes whose protein products closely resemble apterous were used to generate ... [USA] 96: 2165–2170), the apterous mutant phenotype was rescued. ... patterns in the transgenic Drosophila were similar to normal apterous.
Explanation:
It is also known to function in nerve development, fertility, and viability. When human and mouse genes whose protein products closely resemble apterous were used to ... patterns in the transgenic Drosophila were similar to normal apterous. ... for normal wing patterning and growth whereas mutation in the gene (apterous ...is also known to function in nerve development, fertility, and viability. When human and mouse genes whose protein products closely resemble apterous were used to generate ... [USA] 96: 2165–2170), the apterous mutant phenotype was rescued. ... patterns in the transgenic Drosophila were similar to normal apterous.
Yes, elk are herbivores because they eat things such as grass and shrubs but not meat.
Answer:
UAGCAGUUAGUUUU
Explanation:
The sequence matches up with the corresponding bases. Because it is RNA A goes with U not T but T still goes with A.
A T
U A
Deletion is when a part of the chromosome is deleted. (Removed)
Insertion is when part of our chromosome has an extra bit added to it.
Translocation Is when one part of the chromosome is moved to another chromosome.
The correct answer is inversion, to invert means to turn upside down. So when part of the chromosome is taken off but attached backwards (turned upside down) we call it inversion
Hope that makes sense