<h3>
Answer: D) 3/150</h3>
==========================================================
Explanation:
With the use of a calculator, we see that,
- 11/19 = 0.57894736842106...., the decimals eventually repeat; but unfortunately my calculator ran out of room to show the repeating portion
- 4/7 = 0.5714285714285714..., the block "571428" repeats forever
- 1/3 = 0.333333.... the 3s go on forever
- 3/150 = 0.02
So 3/150 converts to the terminating decimal 0.02
The word "terminate" means "stop". In the other decimal values, the decimal digits go on forever repeating the patterns mentioned.
----------------------
A non-calculator approach will have us simplify 3/150 into 1/50 after dividing both parts by the GCF 3. Then notice how 50 has the prime factorization of 2*5*5. The fact that the denominator 50 can be factored in terms of only 2's and 5's is enough evidence to conclude that the fraction converts to a terminating decimal.
If the denominator factors into some other primes, other than 2s and 5s, then we don't have a terminating decimal. So that's why 11/19, 4/7 and 1/3 convert to non-terminating decimals.
Answer:
241 clients
Step-by-step explanation:
His problem can be solved using the principle of proportionality or rule three.
We can take advantage of the proportion between respondents who tell us the number of respondents and how many expect to go on vacation and the total number of workers, therefore:
Respondents /// Whole company
Vacations 21 x
Total 45 516
then x equals:
x = (516 * 21) / (45)
x = 240.8
x = 241 clients
This means that approximately 241 clients expect to go on vacation throughout the company.
Answer: B 1/m
Step-by-step explanation:
In all right triangles, the ratio between a leg and the hypothenuse is the sine of the angle opposite to the leg.
So, in your case, we have

In order to find XY, we have

So, the ratio for the sine is

let's convert the mixed fractions to improper fractions firstly.
![\bf \stackrel{mixed}{2\frac{3}{8}}\implies \cfrac{2\cdot 8+3}{8}\implies \stackrel{improper}{\cfrac{19}{8}}~\hfill \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\\\ \stackrel{mixed}{3\frac{1}{8}}\implies \cfrac{3\cdot 8+1}{8}\implies \stackrel{improper}{\cfrac{25}{8}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B3%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B3%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B8%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B1%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%208%2B1%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
