<span>When an electron, which is negatively charged, moves towards an electronegative atom, the electronegative atom pulls in the electron. This causes the electronegative atom to be reduced. This entire process also releases energy.</span>
5 Na molecules and 5 Cl molecules
Compounds Na₂SO₄ and NaCl are mixed together are we are asked to find the concentration of Na⁺ in the mixture
Na₂SO₄ ---> 2 Na⁺ + SO₄³⁻
1 mol of Na₂SO₄ gives out 2 mol of Na⁺ ions
the number of Na₂SO₄ moles added - 0.800 M/1000 * 100 ml
= 0.08 mol
therefore number of Na⁺ ions from Na₂SO₄ = 0.08 * 2 = 0.16 mol
NaCl ----> Na⁺ + Cl⁻
1 mol of NaCl gives 1 mol of Na⁺ ions
number of NaCl moles added = 1.20 M/1000 * 200 ml
= 0.24 mol
number of Na⁺ ions from NaCl = 0.24 mol
total number of Na⁺ ions in the mixture = 0.16 mol + 0.24 mol = 0.4 mol
as stated the volumes are additive,
therefore total volume = 100 ml + 200 ml = 300 ml
the concentration of Na⁺ ions = number of moles / volume
= 0.4 mol/ 0.3 dm³
concentration of Na⁺ = 1.33 mol/dm³
Answer:
50.96g
Explanation:
Given parameters:
Number of moles of H₃PO₄ = 0.52moles
Unknown:
Mass of the compound = ?
Solution:
To find the mass of the compound:
Mass = number of moles x molar mass of H₃PO₄
Molar mass of H₃PO₄ = 3(1) + 31 + 4(16) = 98g/mol
Mass = 0.52 x 98 = 50.96g
Answer:
<u><em></em></u>
- <u><em>pOH = 0.36</em></u>
Explanation:
Both <em>potassium hydroxide</em> and <em>lithium hydroxide </em>solutions are strong bases, so you assume 100% dissociation.
<u>1. Potassium hydroxide solution, KOH</u>
- Volume, V = 304 mL = 0.304 liter
- number of moles, n = M × V = 0.36M × 0.304 liter = 0.10944 mol
- 1 mole of KOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.10944
<u>2. LIthium hydroxide, LiOH</u>
- Volume, V = 341 mL = 0.341 liter
- number of moles, n = M × V = 0.341 liter × 0.51 M = 0.17391 mol
- 1mole of LiOH produces 1 mol of OH⁻ ion, thus the number of moles of OH⁻ is 0.17391
<u />
<u>3. Resulting solution</u>
- Number of moles of OH⁻ ions = 0.10944 mol + 0.17391 mol = 0.28335 mol
- Volume of solution = 0.304 liter + 0.341 liter = 0.645 liter
- Molar concentration = 0.28335 mol / 0.645 liter = 0.4393 M
<u />
<u>4. </u><em><u>pOH</u></em>
← answer