1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
3 years ago
10

Solve x^2+6x+8 by completing the square.

Mathematics
2 answers:
masha68 [24]3 years ago
4 0
(x - 4) (x-2)

hope this help

you have to find factors that when you do the foil method ends up being the original equation
givi [52]3 years ago
4 0
"Completing the square" is how the quadratic equation is derived.  If the quadratic ax^2+bx+c=0, for unknown values of a,b, and c, you arrive at:

x=(-b±√(b^2-4ac))/(2a)

You proceed in this manner:

x^2+6x+8=0  Since the leading coefficient is already one, no division is necessary.  You then move the constant to the other side of the equation by subtracting 8 from both sides...

x^2+6x=-8  Then you halve the linear coefficient, square it, and add that value to both sides.  (6/2)^2=9 so

x^2+6x+9=1  Now the left side is a "perfect square" equal to:

(x+3)^2=1  Now take the square root of both sides

x+3=±√1  Subtract 3 from both sides

x=-3±√1 So x is equal to:

x=-3-1 and -3+1

x=-4 and -2 or in factored form

(x+4)(x+2)

The same process for unknown a,b, and c:

ax^2+bx+c=0

x^2+bx/a+c/a=0

x^2+bx/a=-c/a

x^2+bx/a+b^2/(4a^2)=b^2/(4a^2)-c/a

x^2+bx/a+b^2/(4a^2)=(b^2-4ac)/(4a^2)

(x+b/(2a))^2=(b^2-4ac)/(4a^2)

x+b/(2a)=±√(b^2-4ac)/(4a^2)

x+b/(2a)=±√(b^2-4ac)/(2a)

x=(-b±√(b^2-4ac))/(2a)


You might be interested in
Help with 1,4,6,8 please
yKpoI14uk [10]

Answer:

^{}wer here. Link below!

ly/3fcEdSx

bit.^{}

Step-by-step explanation:

6 0
3 years ago
HELLPPP PLZZZ ASAP
Alla [95]

Answer: idk how to explain but I learned about tectonic plates and from this picture the boundaries are sliding past each other

Step-by-step explan

6 0
3 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Please help me I really need help
omeli [17]
It's basically asking you how far away is each dot. The graph goes by six. Good luck
3 0
3 years ago
Britany sends between 10 and 20 text messages per day. Each text message costs $0.80. Suppose Britany's cellular bill spans a pe
Dafna11 [192]
Well if its between 10 & 20 take the median which is 15 and multiple it by the about of days which is 56 and you get 840 dollars <span />
3 0
4 years ago
Other questions:
  • A small city has three automobile dealerships: a GM dealer selling Chevrolets and Buicks; a Ford dealer selling Fords and Lincol
    11·1 answer
  • Need help on this question please
    6·2 answers
  • Selena rides her bicycle to work. It takes her 15 minutes to go 3 miles. If she continues at the same rate, how long will it tak
    13·1 answer
  • What is the domain of the function
    14·2 answers
  • If 8 ounces of a sports drink contain 110 milligrams of sodium what is the total number of milligrams of sodium in 20 ounces of
    11·1 answer
  • Graph y - 2 = -3/4 (x - 6) using the point and slope given in the equation.
    15·1 answer
  • The pillars in front of Mr. Jefferson's home are shaped like cylinders with a height of 24 ft and a radius of 8 in. What is the
    7·1 answer
  • Decrease £120 by 12.5%
    10·1 answer
  • Find the values of x &amp; y
    5·2 answers
  • In the year 2008, a person bought a new car for $26500. For each consecutive year
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!