1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
3 years ago
7

Find the volume of the rectangular pyramid.

Mathematics
1 answer:
UNO [17]3 years ago
4 0

Answer:

28

Step-by-step explanation:

V = (1/3)Bh

V = (1/3)(7 ft)(2 ft)(6 ft)

V = 28 ft^3

You might be interested in
Answer Question number 5 <br><br>Plzzzz
Softa [21]

Step-by-step explanation:

Consider x⅓ =a

then the following expression can be written as

a²+a-2

a²+2a-a-2

a(a+2)-1(a+2)

(a+2)(a-1)

a= -2 or, a= 1

Putting the value of a

x⅓ = -2 and, x⅓ =1

6 0
3 years ago
Read 2 more answers
What is the slope of the line in the coordinate plane?
liberstina [14]

Answer:

slope is rise over run

My math teacher says that

5 0
2 years ago
rosy wants a large picture window put in the living room of her new house. The widow is to be square with an area of 49 square f
andre [41]
Each side should be 14.75 square feet long.
4 0
3 years ago
Read 2 more answers
Marcos gana S/18,50 por hora y se le descuenta
Talja [164]

Answer:

$76,9

Step-by-step explanation:

Para calcular cuánto ganó Marcos ese día, tienes que multiplicar el salario por hora por el número de horas que trabajó y restarle el valor por los minutos que llegó tarde que es el resultado de multiplicar los minutos que llegó tarde por el valor a descontar por minuto:

salario: $18,50 por hora

número de horas trabajadas: 5

descuento por tardanza: $1,20 por minuto

número de minutos de tardanza: 13 minutos

salario del día=($18,50*5)-($1,20*13)

salario del día=$92,5-$15,6

salario del día=$76,9

De acuerdo con esto, el salario que Marcos ganó ese día es $76,9.

4 0
3 years ago
(D^2 +2D +1)y=e^-x log(x) solve using method variation of parameter?
Ad libitum [116K]
First you'll need the complementary solutions. The characteristic equation for this ODE is

D^2+2D+1=(D+1)^2=0\implies D=-1

with multiplicity 2. This means two linearly independent solutions will be y_1=e^{-x} and y_2=xe^{-x}.

Via variation of parameters, the particular solution will take the form

y_p=y_1u_1+y_2u_2

where

u_1=-\displaystyle\int\frac{y_2e^{-x}\log x}{W(y_1,y_2)}\,\mathrm dx
u_2=\displaystyle\int\frac{y_1e^{-x}\log x}{W(y_1,y_2)}\,\mathrm dx

The Wronskian is

W(y_1,y_2)=\begin{vmatrix}e^{-x}&xe^{-x}\\-e^{-x}&e^{-x}(1-x)\end{vmatrix}=e^{-2x}(1-x)+xe^{-2x}=e^{-2x}

So, you have

u_1=-\displaystyle\int\frac{xe^{-x}e^{-x}\log x}{e^{-2x}}\,\mathrm dx
u_1=-\displaystyle\int x\log x\,\mathrm dx
u_1=\dfrac14x^2-\dfrac12x^2\log x

and

u_2=\displaystyle\int\frac{e^{-x}e^{-x}\log x}{e^{-2x}}\,\mathrm dx
u_2=\displaystyle\int\log x\,\mathrm dx
u_2=x(\log x-1)

So the solution to the ODE is

y=C_1y_1+C_2y_2+y_1u_1+y_2u_2
y=(C_1+C_2x)e^{-x}+\left(\dfrac14x^2-\dfrac12x^2\log x\right)e^{-x}+(\log x-1)x^2e^{-x}
y=(C_1+C_2x)e^{-x}+\dfrac14x^2e^{-x}(2\log x-3)
3 0
3 years ago
Other questions:
  • PLEASE HELP! 11 POINTS, I KNOW THATS A LITTLE BIT, BUT IF YOU DO HELP WITH THESE 5 EASY QUESTIONS ILL BE SURE TO GIVE U BRAINIES
    6·1 answer
  • Comet cable charges $32.50 a month for basic cable television. Each premium channel selected costs an additional $4.50 per month
    12·1 answer
  • Can someone please answer this ASAP??
    6·1 answer
  • Give an example of a rational function that has a horizontal asymptote at y = 1 and a vertical asymptote at x = 4.
    10·1 answer
  • Please someone help!
    7·2 answers
  • I need help pls help me!!!!
    6·1 answer
  • Pls help this is probably super easy but not for me
    10·2 answers
  • Can y’all help me on question 6?!
    14·1 answer
  • Solve by elimination and show all steps please <br><br><br> 3x=2y-7, 2x-y=10
    11·2 answers
  • Pls help with part a b and c
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!