By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
<h3>How to solve a system of equations</h3>
In this question we have a system formed by a <em>linear</em> equation and a <em>non-linear</em> equation, both with no <em>trascendent</em> elements and whose solution can be found easily by algebraic handling:
x - y = 5 (1)
x² · y = 5 · x + 6 (2)
By (1):
y = x + 5
By substituting on (2):
x² · (x + 5) = 5 · x + 6
x³ + 5 · x² - 5 · x - 6 = 0
(x + 5.693) · (x - 1.430) · (x + 0.737) = 0
There are three solutions: x₁ ≈ 5.693, x₂ ≈ 1.430, x₃ ≈ - 0.737
And the y-values are found by evaluating on (1):
y = x + 5
x₁ ≈ 5.693
y₁ ≈ 10.693
x₂ ≈ 1.430
y₂ ≈ 6.430
x₃ ≈ - 0.737
y₃ ≈ 4.263
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
To learn more on nonlinear equations: brainly.com/question/20242917
#SPJ1
We have that
<span>Circle 1: center (8, 5) and radius 6
</span><span>Circle 2: center (−2, 1) and radius 2
we know that
the equation of a circle is
(x-h)</span>²+(y-k)²=r²
for the circle 1---------> (x-8)²+(y-5)²=36
for the circle 2---------> (x+2)²+(y-1)²=4
using a graph tool
see the attached figure
Part A)<span>What transformations can be applied to Circle 1 to prove that the circles are similar?
we know that
r1/r2---------> 6/2------> 3
</span><span>
to prove that the circle 1 and circle 2 are similar, the radius of circle 1 </span>must be divided by 3 and translate the center of the circle 1 (10) units to the left and (4) units down
<span>
the answer part A) is
</span>
the radius of circle 1 must be divided by 3 and translate the center of the circle 1 (10) units to the left and (4) units down
Part B) <span>What scale factor does the dilation from Circle 1 to Circle 2 have?
the answer Part B) is
the scale factor is (3/1)</span>
Answer:last one
Step-by-step explanation:
Answer: 12
Step-by-step explanation:
We know that , the ceiling function y = [x] is also known as the least integer function that gives the smallest integer greater than or equal to x.
For example : For x= 1.5
y = [1.5] =2
For x= 3.64
y = ⌊3.64⌋=4
The given function :
Then, for x= 5.9 , we have
[since [3.9]=4 (least integer function)]
Therefore, the value of f(5.9) is 12