Step-by-step explanation:
A left Riemann sum approximates a definite integral as:

Given ∫₂⁸ cos(x²) dx:
a = 2, b = 8, and f(x) = cos(x²)
Therefore, Δx = 6/n and x = 2 + (6/n) (k − 1).
Plugging into the sum:
∑₁ⁿ cos((2 + (6/n) (k − 1))²) (6/n)
Therefore, the answer is C. Notice that answer D would be a right Riemann sum rather than a left (uses k instead of k−1).
Answer
6
Step-by-step explanation:
Step-by-step explanation:
a = -52 - b / 4
b = -52 - 4a
<em><u>plz </u></em><em><u>mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u> plzzzz</u></em><em><u>.</u></em><em><u> </u></em><em><u>hope</u></em><em><u> this</u></em><em><u> will</u></em><em><u> be</u></em><em><u> helpful</u></em><em><u> to</u></em><em><u> you</u></em><em> </em><em>.</em>
Here it is.. you need to calculate some numbers
-86 = -6(-3p - 3) - 5p
Distribute the -6 into the parentheses:
-86 = (-6 * -3p) + (-6 * -3) - 5p
-86 = 18p + 18 - 5p
Simplify:
-86 = 13p + 18
Subtract both sides by 18:
-86 - 18 = 13p + 18 - 18
-104 = 13p
Divide both sides by 13:
= 
= 
<u>p = -8</u>
<u></u>
Good luck! If you have any questions, don't be afraid to ask :))
-T.B.