Answer:
2 : 3
Step-by-step explanation:
A disc has a diameter of 21 cm while a mini disc has a diameter of 14cm. Write the ratio of the mini disc diameter to the disc diameter.
Answer: Let the diameter of the mini disc be
while the diameter of the disc be
. To get the ratio of the mini disc diameter to the disc diameter, we just simply have to divide the diameter of the mini disc by the diameter of the disc and then represent the fraction in ratio form. The ratio of the disc diameters is given by:
Ratio of the mini disc diameter to the disc diameter = Diameter of mini disc / diameter of disc
Ratio of the mini disc diameter to the disc diameter = 
Ratio of the mini disc diameter to the disc diameter = 2 : 3
Answer:
A. 148%
To find percent you just have to multiply your decimal by one hundred, which in this case moves the decimal to the very back and makes 1.48 = 148%
Answer:
Tamara incorrectly factored the whole expression.
Step-by-step explanation:
Note that
- 21x=3·7·x;
- 56xy=2·2·2·7·x·y.
Mark in bold all common factors, then GCF(21x,56xy)=7·x=7x.
Thus,
21x+56xy=7x(3+8y).
Hence, Tamara correctly found the GCF of numbers 21 and 56, but incorrectly factored the whole expression.
Answer:
Lower limit: 113.28
Upper limit: 126.72
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Middle 60%
So it goes from X when Z has a pvalue of 0.5 - 0.6/2 = 0.2 to X when Z has a pvalue of 0.5 + 0.6/2 = 0.8
Lower limit
X when Z has a pvalue of 0.20. So X when 




Upper limit
X when Z has a pvalue of 0.80. So X when 



