Answer: c
Step-by-step explanation:
we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
0.5239 would round to 0.52
3,204,887,219 would round to 3,000,000,000
Step-by-step explanation:
Answer:
122
Step-by-step explanation:
For this case we must build a quotient that, when multiplied by the divisor, eliminates the terms of the divide until it reaches the remainder.
It must be fulfilled that:
Dividend = Quotient * Divisor + Remainder
we have that the remainder is 122.
have a good day