The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
The answer is D because if you add all the same terms you get the answer
Answer:
Step-by-step explanation:
Here you go mate
Step 1
-7x+8<-6 Equation/Question
Step 2
-7x+8<-6 Simplify
-7x+8<-6
Step 3
-7x+8<-6 Subtract 8
-7x<-14
Step 4
-7x<-14 Divide sides by -7
answer
x>2
Hope this helps
80% is the answer to ur question
Answer:
Let's call the first studio, yoga studio A.
Let's call the second studio, yoga studio B.
The equations:
Yoga Studio A: y=10x+55
Yoga Studio B: y=12.5x+25
So, for 12 classes:
Yoga Studio A: y=10(12)+55, y=175
Yoga Studio B: y=12.5(12)+25, y=175
These two numbers are equal, so Griffin is right.
For 10 classes:
Yoga Studio A: y=10(10)+55, y=155
Yoga Studio B: y=12.5(10)+25, y=150.
These two numbers are not equal, so Gigi is wrong.
Let me know if this helps!