1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
13

Find measure of angle 1. ​

Mathematics
1 answer:
alekssr [168]3 years ago
3 0

Answer:

angle 1=90-(180-90+33)

90-57

angle 1=33

You might be interested in
Twice the sum of Paloma's age and 15 is 106. How old is Paloma?
fredd [130]

Answer: 121

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Whats longer 3 hours or 175 minutes
avanturin [10]
3 hours is longer than 175 minutes. An hour is 60 minutes long, so just multiply that by 3 and compare your answer to 175.

60 x 3 = 180
180 > 175

Therefore, 3 hours is longer than 175 minutes.

Hope this helps!
6 0
3 years ago
Read 2 more answers
The volume of a sphere is increasing at a constant rate of 141 cubic feet per minute. At the instant when the radius of the sphe
ch4aika [34]

Answer:

0.093 ft/min

Step-by-step explanation:

V = 4/3 π r³

Take derivative with respect to time:

dV/dt = 4π r² dr/dt

Plug in values:

141 = 4π (11)² dr/dt

dr/dt = 141 / (484π)

dr/dt ≈ 0.093

The radius is increasing at 0.093 ft/min.

6 0
4 years ago
Time (min)
Gala2k [10]
The only way I could ever do that is 3
6 0
3 years ago
77. the volume of a cube is increasing at a rate of <img src="https://tex.z-dn.net/?f=10%20%5Cmathrm%7B~cm%7D%5E%7B3%7D%20%2F%20
Colt1911 [192]

Answer:

\displaystyle \frac{4}{3}\text{cm}^2/\text{min}

Step-by-step explanation:

<u>Given</u>

<u />\displaystyle \frac{dV}{dt}=10\:\text{cm}^3/\text{min}\\ \\V=s^3\\\\SA=6s^2\\\\\frac{d(SA)}{dt}=?}\:;s=30\text{cm}

<u>Solution</u>

(1) Find the rate of the cube's edge length with respect to time at s=30:

\displaystyle V=s^3\\\\\frac{dV}{dt}=3s^2\frac{ds}{dt}\\ \\10=3(30)^2\frac{ds}{dt}\\ \\10=3(900)\frac{ds}{dt}\\\\10=2700\frac{ds}{dt}\\\\\frac{10}{2700}=\frac{ds}{dt}\\\\\frac{ds}{dt}=\frac{1}{270}\text{cm}/\text{min}

(2) Find the rate of the cube's surface area with respect to time at s=30:

\displaystyle SA=6s^2\\\\\frac{d(SA)}{dt}=12s\frac{ds}{dt}\\ \\\frac{d(SA)}{dt}=12(30)\biggr(\frac{1}{270}\biggr)\\\\\frac{d(SA)}{dt}=\frac{360}{270}\biggr\\\\\frac{d(SA)}{dt}=\frac{4}{3}\text{cm}^2/\text{min}

Therefore, the surface area increases when the length of an edge is 30 cm at a rate of \displaystyle \frac{4}{3}\text{cm}^2/\text{min}.

6 0
2 years ago
Other questions:
  • The Smiths own a home whose market value is $105,000. Their municipality taxes at 85% and the rate is 70 mills or $70 per thousa
    9·2 answers
  • How do I solve 1/8x=5
    6·2 answers
  • A flying disc has a radius of
    14·1 answer
  • Consider that lines A and B are parallel. Which equation models the relationship between ∠1 and ∠5?
    12·2 answers
  • Factor the expression using GCF of 4+22​
    8·1 answer
  • Please select the best answer from the choices
    7·1 answer
  • Emma has a gift box in the shape of a cube. Each side of the box measures 9 centimeters. What is the volume of the gift box?
    8·1 answer
  • PLEASE HELP!! (Give reasonable answer)
    14·1 answer
  • 1. The lease common multiple of 3, 4, 6, and 8 is<br> OA. 8.<br> OB. 24.<br> O C.72.<br> OD.96.
    15·2 answers
  • All real numbers less than or equal to -5.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!