1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mariarad [96]
2 years ago
12

Need help Identify the domain of the function shown in the graph

Mathematics
1 answer:
Lady bird [3.3K]2 years ago
8 0

Answer:

B

Step-by-step explanation:

You might be interested in
Triangle LMN has coordinates L (0, 0), M (0, -2), and N (2, 0). If ΔLMN ≅ ΔXYZ, what is the measure of XZ?
salantis [7]

Check the picture below.

3 0
3 years ago
(K3+2k2-82k-28)/(k+10)
Ne4ueva [31]

So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:

<em>(Note that synthetic division can only be used when the divisor is a 1st degree binomial)</em>

  • -10 | 1 + 2 - 82 - 28
  • ---------------------------

Now firstly, drop the 1:

  • -10 | 1 + 2 - 82 - 28
  •       ↓
  • -------------------------
  •        1

Next, you are going to multiply -10 and 1, and then combine the product with 2.

  • -10 | 1 + 2 - 82 - 28
  •       ↓ - 10
  • -------------------------
  •        1 - 8

Next, multiply -10 and -8, then combine the product with -82:

  • -10 | 1 + 2 - 82 - 28
  •       ↓ -10 + 80
  • -------------------------
  •        1 - 8 - 2

Next, multiply -10 and -2, then combine the product with -28:

  • -10 | 1 + 2 - 82 - 28
  •       ↓ -10 + 80 + 20
  • -------------------------
  •        1 - 8 - 2 - 8

Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).

<u>Putting it together, the quotient is k^2-8k-2-\frac{8}{k+10}</u>

8 0
2 years ago
What is the GCF of 48 and 16?
antiseptic1488 [7]
HOPE THIIIISSS HELLLPSSSS

8 0
2 years ago
After 3/4 of a minute a sloth has moved just 3/8 of a foot. what is the sloth's speed in feet per minute
Delicious77 [7]
Hello! 

So 4/4 - 3/4 = 1/4 (a quarter). So we have to find a quarter of 3/8 and add it to 3/8. First of all, we have to convert 1/4 to a percentage. The answer is 25%. 3/8 as a decimal is 0.375. 25% of 0.375 = (0.25 x 0.375 =) 0.09375. 
0.09375 + 0.375 = 0.46875. 
Now, we have to convert 0.46875 back into a fraction. 

So the answer is 5/64.

Have a great day! :)
3 0
3 years ago
Sin4x.sin5x+sin4x.sin3x-sin2x.sinx=0
andreev551 [17]

Recall the angle sum identity for cosine:

cos(<em>x</em> + <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) - sin(<em>x</em>) sin(<em>y</em>)

cos(<em>x</em> - <em>y</em>) = cos(<em>x</em>) cos(<em>y</em>) + sin(<em>x</em>) sin(<em>y</em>)

==>   sin(<em>x</em>) sin(<em>y</em>) = 1/2 (cos(<em>x</em> - <em>y</em>) - cos(<em>x</em> + <em>y</em>))

Then rewrite the equation as

sin(4<em>x</em>) sin(5<em>x</em>) + sin(4<em>x</em>) sin(3<em>x</em>) - sin(2<em>x</em>) sin(<em>x</em>) = 0

1/2 (cos(-<em>x</em>) - cos(9<em>x</em>)) + 1/2 (cos(<em>x</em>) - cos(7<em>x</em>)) - 1/2 (cos(<em>x</em>) - cos(3<em>x</em>)) = 0

1/2 (cos(9<em>x</em>) - cos(<em>x</em>)) + 1/2 (cos(7<em>x</em>) - cos(3<em>x</em>)) = 0

sin(5<em>x</em>) sin(-4<em>x</em>) + sin(5<em>x</em>) sin(-2<em>x</em>) = 0

-sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) (sin(4<em>x</em>) + sin(2<em>x</em>)) = 0

Recall the double angle identity for sine:

sin(2<em>x</em>) = 2 sin(<em>x</em>) cos(<em>x</em>)

Rewrite the equation again as

sin(5<em>x</em>) (2 sin(2<em>x</em>) cos(2<em>x</em>) + sin(2<em>x</em>)) = 0

sin(5<em>x</em>) sin(2<em>x</em>) (2 cos(2<em>x</em>) + 1) = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   2 cos(2<em>x</em>) + 1 = 0

sin(5<em>x</em>) = 0   <u>or</u>   sin(2<em>x</em>) = 0   <u>or</u>   cos(2<em>x</em>) = -1/2

sin(5<em>x</em>) = 0   ==>   5<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   5<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   5<em>x</em> = 2<em>nπ</em>   <u>or</u>   5<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = 2<em>nπ</em>/5   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/5

sin(2<em>x</em>) = 0   ==>   2<em>x</em> = arcsin(0) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = arcsin(0) + <em>π</em> + 2<em>nπ</em>

… … … … …   ==>   2<em>x</em> = 2<em>nπ</em>   <u>or</u>   2<em>x</em> = (2<em>n</em> + 1)<em>π</em>

… … … … …   ==>   <em>x</em> = <em>nπ</em>   <u>or</u>   <em>x</em> = (2<em>n</em> + 1)<em>π</em>/2

cos(2<em>x</em>) = -1/2   ==>   2<em>x</em> = arccos(-1/2) + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -arccos(-1/2) + 2<em>nπ</em>

… … … … … …    ==>   2<em>x</em> = 2<em>π</em>/3 + 2<em>nπ</em>   <u>or</u>   2<em>x</em> = -2<em>π</em>/3 + 2<em>nπ</em>

… … … … … …    ==>   <em>x</em> = <em>π</em>/3 + <em>nπ</em>   <u>or</u>   <em>x</em> = -<em>π</em>/3 + <em>nπ</em>

<em />

(where <em>n</em> is any integer)

5 0
2 years ago
Other questions:
  • Verify the identity. Show your work. (1 + tan^2u)(1 - sin^2u) = 1
    9·1 answer
  • Two girls had apples for 14 days. They had 512 in total. Each girl had an equal number of apples. How many apples did each girl
    5·1 answer
  • Here is the right photo please help i need this before july 1st thank you
    9·1 answer
  • The graph of y = x^2 -3 is translated in 4 units to the left of the graph to give the graph A
    11·1 answer
  • Evaluate 6x + 3y - 4, if x = 20 and y= 2.<br> 0<br> 0<br> 0<br> 0
    7·1 answer
  • Answer questions Correctly for brainly​
    8·1 answer
  • SOMEONE PLEASE HELP.&gt;&gt;&gt;&gt;&gt;&gt;
    8·1 answer
  • the sale price for basic auto-up is $109, a tire rotation is $29, and an oil change is $25. find the total cost for all the serv
    15·2 answers
  • Callie conducted a survey to determine students' favorite color. Of the students she surveyed, 18 out of 48 preferred blue. If t
    13·1 answer
  • please answer them and attach a picture explaining them! Thank you so so much! Please add this is for number 1 this is for numbe
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!