The vertices of abc given the transition rule (x,y)-->(x,y-3) are (-6, -10), (-3, -13) and (-5, -1)
<h3>How to determine the new vertices?</h3>
The vertices are given as:
a (-6,-7)
b(-3,-10)
c(-5,2)
The transition rule is given as
(x,y)-->(x,y-3)
So, we have
a' = (-6, -7 - 3)
a' = (-6, -10)
b' = (-3, -10 - 3)
b' = (-3, -13)
c' = (-5, 2 - 3)
c' = (-5, -1)
Hence, the vertices of abc given the transition rule (x,y)-->(x,y-3) are (-6, -10), (-3, -13) and (-5, -1)
Read more about translation at:
brainly.com/question/4289712
#SPJ1
2x-4/x-5 = 0 (Determine the defined range)
x \neq 5
2x-4 = 0 (Move constant to the right side and change its sign)
2x=4
x=2, x \neq 5 (Check if the solution is in the defined range)
x=2
Answer:
( 2x +3) (x+1)
Step-by-step explanation:
2x^2 + 5x + 3
2 factors to 2 and 1
3 factors to 3 and 1
We need to get 5x in the middle
( 2x +3) (x+1)
Which of the following can you determine, when you use deduction and start from a given set of rules and conditions?
- ○<em> </em><em>B</em><em>.</em><em> </em><em>What</em><em> </em><em>must</em><em> </em><em>be</em><em> </em><em>true</em>
<u>Deduction</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>term</u><u> </u><u>used</u><u> </u><u>to</u><u> </u><u>refer</u><u> </u><u>a</u><u> </u><u>known</u><u> </u><u>and</u><u> </u><u>validated</u><u> </u><u>principle</u><u>.</u><u> </u><u>This</u><u> </u><u>term</u><u> </u><u>is</u><u> </u><u>given</u><u> </u><u>when</u><u> </u><u>you</u><u> </u><u>analyse</u><u> </u><u>points</u><u> </u><u>but</u><u> </u><u>through</u><u> </u><u>logic</u><u>.</u><u> </u>