1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
12

Does changing amplitude, wavelength or frequency play a role in how bluetooth acts?

Physics
1 answer:
Mandarinka [93]3 years ago
3 0

Answer:

Yes

Explanation:

Yes, bluetooth devices work in a frequency range between 2.4 - 2.485GHz. Outside this frequency the devices will not communicate with each other correctly. This frequency equals a wavelength of around 1cm. Therefore, any change in the amplitude or wavelength would need to be in relation to each other in order to maintain the frequency in the required range for the bluetooth device to work accordingly. If one increases while the other remains the same it can easily change the frequency to outside the range.

You might be interested in
PLEASE HELP ME ASAP!!!!!!! <br> giving brainliest for correct answers
Vera_Pavlovna [14]

Answer:

b

Explanation:

6 0
2 years ago
You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength
GREYUIT [131]

Answer:

Period of the signal.

Explanation:

So, this question is all about a concept in physics or astronomy which is called or known as Radiation Astronomy and Galactic Nuclei that are active. This concept talks most about Quasars; a powerful radiating object which derives its power from black holes.

When You take a look at Quasars, we get the to know that the more you think you can see, the more they move away from us.

Thus, when "You are observing the radiation from a distant active galaxy and you notice that the amplitude of the signal varies in strength regularly over a certain period. The maximum possible size for the source of this radiation can now be calculated from the "PERIOD OF THE SIGNAL.

NB: not the amplitude but the period.

7 0
3 years ago
A _____ has to do with the direction of a force​
Elenna [48]

Answer:

The "solid force"? ... The direction of the force always seems to be coming out of the solid surface. A direction which is perpendicular to the plane of a surface is said to be normal. The force that a solid surface exerts on anything in the normal direction is called the normal force.

Explanation:

i think i hope this helps

3 0
3 years ago
Read 2 more answers
A charge of 32.0 nC is placed in a uniform electric field that is directed vertically upward and has a magnitude of 4.30x 104 V/
hodyreva [135]

A) The work done by the electric field is zero

B) The work done by the electric field is 9.1\cdot 10^{-4} J

C) The work done by the electric field is -2.4\cdot 10^{-3} J

Explanation:

A)

The electric field applies a force on the charged particle: the direction of the force is the same as that of the electric field (for a positive charge).

The work done by a force is given by the equation

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement of the particle

\theta is the angle between the direction of the force and the direction of the displacement

In this problem, we have:

  • The force is directed vertically upward (because the field is directed vertically upward)
  • The charge moves to the right, so its displacement is to the right

This means that force and displacement are perpendicular to each other, so

\theta=90^{\circ}

and cos 90^{\circ}=0: therefore, the work done on the charge by the electric field is zero.

B)

In this case, the charge move upward (same direction as the electric field), so

\theta=0^{\circ}

and

cos 0^{\circ}=1

Therefore, the work done by the electric force is

W=Fd

and we have:

F=qE is the magnitude of the electric force. Since

E=4.30\cdot 10^4 V/m is the magnitude of the electric field

q=32.0 nC = 32.0\cdot 10^{-9}C is the charge

The electric force is

F=(32.0\cdot 10^{-9})(4.30\cdot 10^4)=1.38\cdot 10^{-3} N

The displacement of the particle is

d = 0.660 m

Therefore, the work done is

W=Fd=(1.38\cdot 10^{-3})(0.660)=9.1\cdot 10^{-4} J

C)

In this case, the angle between the direction of the field (upward) and the displacement (45.0° downward from the horizontal) is

\theta=90^{\circ}+45^{\circ}=135^{\circ}

Moreover, we have:

F=1.38\cdot 10^{-3} N (electric force calculated in part b)

While the displacement of the charge is

d = 2.50 m

Therefore, we can now calculate the work done by the electric force:

W=Fdcos \theta = (1.38\cdot 10^{-3})(2.50)(cos 135.0^{\circ})=-2.4\cdot 10^{-3} J

And the work is negative because the electric force is opposite direction to the displacement of the charge.

Learn more about work and electric force:

brainly.com/question/6763771

brainly.com/question/6443626

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

5 0
3 years ago
A vertical spring stretches 4.0 cm when a 12-g object is hung from it. The object is replaced with a block of mass 28 g that osc
marin [14]

Answer:

Time period of the osculation will be 0.0671 sec  

Explanation:

It is given a vertical spring is stretched by 4 cm

So change in length of the spring x = 4 cm = 0.04 m

Mass which is hung from it m = 12 gram = 0.012 kg

Sprig force will be equal to weight of the mass

So kx=mg

k\times 0.04=0.012\times 9.8

k = 244.7 N/m

Now new mass is m = 28 gram = 0.028 kg

So time period with new mass will be

T=2\pi \sqrt{\frac{m}{k}}

=2\times 3.14 \sqrt{\frac{0.028}{244.7}}=0.0671sec

4 0
2 years ago
Other questions:
  • I need help with air resistance...
    15·1 answer
  • Two cars leave Calgary at the same time, travelling in opposite directions. Their average speeds differ by 5 km/h. After 2 h, th
    12·2 answers
  • According to Newton’s first law of motion, when will an object at rest begin to move?
    12·1 answer
  • Let the resistance of an electrical component remain constant while the potential difference across the two ends of the componen
    15·2 answers
  • A wave is traveling through a string and six waves pass a point in three seconds what is the frequency of the wave
    8·1 answer
  • A tube closed at one end is used to determine the speed of sound in air. The resonances occur every 32 cm when a 530-Hz tuning f
    15·1 answer
  • an incandescent lightbulb has an efficiency of 2.1% and a power of 60 w. how much light energy does the lighbulb produce in 1 se
    13·1 answer
  • An asteroid has acquired a net negative charge of 149 C from being bombarded by the solar wind over the years, and is currently
    7·1 answer
  • Two tougboats are toeing a ship each exerts a force of 6000N and the angle between the two ropes is 60 calculate the resultant f
    7·1 answer
  • ¿Cuál es la velocidad del sonido en el aíre a -25°C?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!