Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Here We can use principle of angular momentum conservation
Here as we know boy + projected mass system has no external torque
Since there is no torque so we can say the angular momentum is conserved

now we know that
m = 2 kg
v = 2.5 m/s
L = 0.35 m
I = 4.5 kg-m^2
now plug in all values in above equation

![1.75 = [4.5 + 0.245]\omega](https://tex.z-dn.net/?f=1.75%20%3D%20%5B4.5%20%2B%200.245%5D%5Comega)


so the final angular speed will be 0.37 rad/s
Compared to energy-flow in ecosystems, the flow of matter <span>reflects conservation and recycling.
For example, let's take a look at the food chain system. Every time an organism is consumed by another organism, the energy that is given to the eater is only about 10% of the total existing energy
</span>
Answer: (2) Use the Momentum Principle.
Explanation:
In fact, it is called the <u>Conservation of linear momentum principle,</u> which establishes the initial momentum
of the asteroids before the collision must be equal to the final momentum
after the collision, no matter if the collision was elastic or inelastic (in which the kinetic energy is not conserved).
In this sense, the linear momentum
of a body is defined as:

Where
is the mass and
the velocity.
Therefore, the useful approach in this situation is<u> option (2)</u>.