Answer:
Explanation:
An object in free fall, NOT experiencing parabolic motion, has an equation of
which says:
The height of an object with respect to time in seconds is equal to the pull of gravity times time-squared plus the height from which it was dropped. Normally we use -9.8 for gravity but you said to use 10, so be it.
For us, h(t) is 5 because we are looking for the height of the window when the object is 5 m off the ground at .5 seconds;
g = 10 m/s/s, and
t = .5sec
+h and
5 = -5(.5)² + h and
5 = -5(.25) + h and
5 = -1.25 + h so
h = 6.25
That's how high the window is above the ground.
Explanation:
Work is the dot product of the force and displacement vectors.
W = F · d
In other words, it is the force times the parallel component of the distance.
W = F d cos θ, where θ is the angle between the force and distance.
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:

Explanation:
The magnitude of the electrical force between the two point charges is

where
k is the Coulomb's constant
is the magnitude of each charge
r = 3.00 m is the separation between the two charges
Substituting the numbers into the formula, we find

Answer:
4 tonne/m³
Explanation:
ρ = m / V
ρ = 49 g / (π (17.4 mm / 2)² (50.3 mm))
ρ = 0.0041 g/mm³
Converting to tonnes/m³:
ρ = 0.0041 g/mm³ (1 kg / 1000 g) (1 tonne / 1000 kg) (1000 mm / m)³
ρ = 4.1 tonne/m³
Rounding to one significant figure, the density is 4 tonne/m³.