I would say the answer is emissions. These are the particles that are not supposed to be present in air but due to the production of different substances from humans daily activities these substances go with the air we breath. Hope this helped.
Answer:
The mole fraction of ethanol is 0.6. A 10 mL volumetric pipette must be used for to measure the 10 mL of ethanol. The vessel should be clean and purged.
Explanation:
For calculating mole fraction of ethanol, the amount of moles ethanol must be calculated. Using ethanol density (0.778 g/mL), 10 mL of ethanol equals to 7.89 g of ethanol and in turn 0.17 moles of ethanol. The same way for calculate the amount of water moles (ethanol density=0.997 g/mL). 2 mL of water correspond to 0.11. The total moles are: 0.17+0.11=0.28. Mole fraction alcohol is: 0.17/0.28=0.6
Hey there!
The equivalence is point in a titration is the point at which you have neutralized all of your base/acid with your titrant acid/base from a buret. This can be seen with indicators which change color at the equivalence point in a titration to signal to you that all of your base/acid has been reacted with. For example, all your molecules of OH⁻ from a NaOH base in a beaker have been neutralized by H⁺of HCl acid from your titrant in a buret leaving only Na⁺ ions and Cl⁻ ions and neutral H₂O molecules.
Answer:
Explanation:
A substance that produces an excess of hydroxide ion (-OH) in aqueous solution.
This is an arrhenius Base
According to the arrhenius theory, a base is a substance that combines with water to produce excess hydroxide ions, OH⁻ in an aqeous solution. Examples are :
- Sodium hydroxide NaOH
- Potassium hydroxide KOH
A substance that produces an excess of hydrogen ion (H+) in aqueous solution
This is an arrhenius Acid
An arrhenius acid is a substance that reacts with water to produce excess hydrogen ions in aqueous solutions.
Examples are;
- Hydrochloric acid HCl
- Hydroiodic acid HI
- Hydrobromic acid HBr