Answer:
1.72973 oz/serving. Perhaps round to 1.73 oz, although there is only 1 sig fig in "4-pound bag." But the problem states "exactly."
Step-by-step explanation:
We want oz/serving, so let's convert the pounds of rice to total ounces of rice:
We are told that 16 oz = 1 pound. Make that a conversion factor: (16 oz/1 pound)
(4 pounds)*((16 oz/1 pound) = 64 ounces
We are told that 4 pounds (64 ounces) makes 37 servings. So:
(64 ounces)/(37 servings) = 1.72973 oz/serving
Deijah has $6.25.
Now, this 6.25 is comprised of 0.05s and 0.25s.
We know that there are 12 0.25s.
We now want to know how many remaining 0.05s there are.
Again, we know that the number of 0.05s he has, which is 12, multiplied by 0.05, plus the number of 0.25s he has, multiplied by 0.25, equals 6.25.
Thus, the answer is A, 0.25 x 12 + 0.05 x n = 6.25.
Answer:
the 15 year olds do
Step-by-step explanation:
Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.
13, because 442/34 is 13 meaning each person sold an equal amount