Answer:
0.000000540
Explanation:
Step 1: Make an ICE chart for the solution of AgBr
"S" represents the molar solubility of AgBr
AgBr(s) ⇄ Ag⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
Step 2: Write the expression for the solubility product constant (Ksp)
Ksp = [Ag⁺] [Br⁻] = S × S
Ksp = S² = (0.0007350)² = 0.000000540
D, <span>Monotonic gases, which have no inter molecular attractions are most suited as ideal gases </span><span />
Answer:
Percent yield of SiC is 77.0%.
Explanation:
Balanced reaction: 
Molar mass of SiC = 40.11 g/mol
Molar mass of
= 60.08 g/mol
So, 100.0 kg of
=
moles of
= 1664 moles of 
According to balanced equation, 1 mol of
produces 1 mol of SiC
Therefore, 1664 moles of
produce 1664 moles of SiC
Mass of 1664 moles of SiC =
= 66743g = 66.74 kg (4 sig. fig.)
Percent yield of SiC = [(actual yield of SiC)/(theoretical yield of SiC)]
%
=
%
= 77.0%
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol