Answer: Choice B) {3, 5, sqrt(34)}
=====================================
Explanation:
We can only have a right triangle if and only if a^2+b^2 = c^2 is a true equation. The 'c' is the longest side, aka hypotenuse. The legs 'a' and 'b' can be in any order you want.
-----------
For choice A,
a = 2
b = 3
c = sqrt(10)
So,
a^2+b^2 = 2^2+3^2 = 4+9 = 13
but
c^2 = (sqrt(10))^2 = 10
which is not equal to 13 from above. Cross choice A off the list.
-----------
Checking choice B
a = 3
b = 5
c = sqrt(34)
Square each equation
a^2 = 3^2 = 9
b^2 = 5^2 = 25
c^2 = (sqrt(34))^2 = 34
We can see that
a^2+b^2 = 9+25 = 34
which is exactly equal to c^2 above. This confirms the answer.
-----------
Let's check choice C
a = 5, b = 8, c = 12
a^2 = 25, b^2 = 64, c^2 = 144
So,
a^2+b^2 = c^2
25+64 = 144
89 = 144
which is a false equation allowing us to cross choice C off the list.
Answer:
Step-by-step explanation: The expected loss is 50 cents, we know that it is more likely to lose than win. It is therefore difficult to get-50, so the overall difference between the two possibilities is 2, 50/200=1/4, and the probability to win is 1/4, and the probability to lose is 3/4. Since (1/4)*3=3/4, the number of black balls is 3 times the number of white balls, so k=15.
Answer:
(1) D.Angle C is congruent to to Angle F. (2) C. SSS. (3) C. cannot be congruent to.
Step-by-step explanation:
1)
From the given figure it is noticed that


According to SAS postulate, if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then both triangles are congruent.
The included angles of congruent sides are angle C and angle G.
So, condition "Angle C is congruent to to Angle F" will prove that the ∆ABC and ∆EFG are congruent by the SAS criterion.
2)
If 
According to SSS postulate, if all three sides in one triangle are congruent to the corresponding sides in the other.
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore SSS criterion for congruence is violated.
3)
Since two corresponding sides are congruent but third sides of triangles are not congruent, therefore the included angle of congruent sides are different.

Therefore angle C and angle F cannot be congruent to each other.
The correct answer to that would be b