We are given that the
coordinates of the vertices of the rhombus are:
<span><span>A(-6, 3)
B(-4, 4)
C(-2, 3)
D(-4, 2)
To solve this problem, we must plot this on a graphing paper or graphing
calculator to clearly see the movement of the graph. If we transform this by
doing a counterclockwise rotation, then the result would be:
</span>A(-6, -3)</span>
B(-4, -4)
C(-2, -3)
D(-4, -2)
And the final
transformation is translation by 3 units left and 2 units down. This can still
be clearly solved by actually graphing the plot. The result of this
transformation would be:
<span>A′(6, -8)
B′(7, -6)
C′(6, -4)
D′(5, -6)</span>
last one is the solution u should choose
<h3>
Answer:</h3>
B) 6 hours
<h3>
Step-by-step explanation:</h3>
Let h represent the total trip time. Then h/2 is the time spent traveling at each speed. The distance covered is ...
... distance = speed · time
The sum of the distances in each mode is the total distance.
... 1020 = 55·h/2 +285·h/2
... 2040 = h·(55+285) . . . . multiply by 2
... 2040/340 = h = 6 . . . . . . . divide by the coefficient of h
The trip took a total of 6 hours.