Answer:
87 packages
Step-by-step explanation:
First we need to find the volume of the cone-shaped vase.
The volume of a cone is given by:
V_cone = (1/3) * pi * radius^2 * height
With a radius of 9 cm and a height of 28 cm, we have:
V_cone = (1/3) * pi * 9^2 * 28 = 2375.044 cm3
Each package of sand is a cube with side length of 3 cm, so its volume is:
V_cube = 3^3 = 27 cm3
Now, to know how many packages the artist can use without making the vase overflow, we just need to divide the volume of the cone by the volume of the cube:
V_cone / V_cube = 2375.044 / 27 = 87.9646 packages
So we can use 87 packages (if we use 88 cubes, the vase would overflow)
Answer:
3/5
Step-by-step explanation:
Answer:
<h3>perpendicular line:
y = -¹/₆
x + 4¹/₃
</h3><h3> parallel line:
y = 6x - 45
</h3>
Step-by-step explanation:
y=m₁x+b₁ ⊥ y=m₂x+b₂ ⇔ m₁×m₂ = -1
{Two lines are perpendicular if the product of theirs slopes is equal -1}
y = 6x - 7 ⇒ m₁=6
6×m₂ = -1 ⇒ m₂ = -¹/₆
The line y=-¹/₆
x+b passes through point (8, 3) so the equation:
3 = -¹/₆
×8 + b must be true
3 = -⁴/₃ + b
b = 4¹/₃
Therefore equation in slope-intercept form:
y = -¹/₆
x + 4¹/₃
y=m₁x+b₁ ║ y=m₂x+b₂ ⇔ m₁ = m₂
{Two lines are parallel if their slopes are equal}
y = 6x - 7 ⇒ m₁=6 ⇒ m₂=6
The line y=6x+b passes through point (8, 3) so the equation:
3 = 6×8 + b must be true
3 = 48 + b
b = -45
Therefore equation in slope-intercept form:
y = 6x - 45
<span>Solve for each equation
h divided by 4/9 for h = 5 1/3
h 16/3
------- = -----------------
4/9 4/9
= 16/3 * 9/4
= 12
answer is </span><span>C) 12</span>
Answer:
Shortest distance from the mountain is 3.17 miles.
Step-by-step explanation:
From the figure attached,
Let a mountain is located at point A.
Angle between the mountain and point B (∠B) = 53°
Angle between the mountain and point C (∠C) = 78°
Distance between these points = 3 miles
Since, m∠A + m∠B + m∠C = 180°
m∠A + 53° + 78° = 180°
m∠A = 180°- 131° = 49°
By applying sine rule in triangle ABC,



AC = 
AC = 3.17 miles

AB = 
AB = 3.89 miles
Therefore, shortest distance from the mountain is 3.17 miles.