Answer:
![y=-67.5[cos(\frac{\pi}{15}t)-1]](https://tex.z-dn.net/?f=y%3D-67.5%5Bcos%28%5Cfrac%7B%5Cpi%7D%7B15%7Dt%29-1%5D)
Step-by-step explanation:
We can start solving this problem by doing a drawing of London Eye. (See attached picture).
From the picture, we can see that the tourists will start at the lowest point of the trajectory, which means we can make use of a -cos function. So the function will have the following shape:

where:
A=amplitude
= angular speed.
t= time (in minutes)
b= vertical shift.
In this case:
A= radius = 67.5 m

where the frequency is the number of revolutions it takes every minute, in this case:

so:


and
b= radius, so
b=A
b=67.5m
so we can now build our equation:

which can be factored to:
![y=-67.5[cos(\frac{\pi}{15}t)-1]](https://tex.z-dn.net/?f=y%3D-67.5%5Bcos%28%5Cfrac%7B%5Cpi%7D%7B15%7Dt%29-1%5D)
You can see a graph of what the function looks like in the end on the attached picture.
x(x-6)^2
let me know if this worked!
Answer:
96 mph
step by step explanation:
240/2.5
Answer:
less than 16 feet wide and 12 feey high but where is shown below?
Step-by-step explanation:
I think you forgot to attach the diagram of the triangle along with the question. I am answering the question based on my research and knowledge. "II only" is the one among the following choices given in the question that must be <span>true of the above triangle ABC. The correct option among all the options that are given in the question is the second option.</span>